Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T17:49:36.352Z Has data issue: false hasContentIssue false

The distribution and physical properties of high-redshift [Oiii] emitters in a cosmological hydrodynamics simulation

Published online by Cambridge University Press:  10 June 2020

Kana Moriwaki*
Affiliation:
Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-0033, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Atacama Large Millimeter/submillimeter Array (ALMA) has enabled us to detect [Oiii] 88 μm line even at z > 9. To study the properties of high-redshift [Oiii] emitters, we calculate [Oiii] luminosities of galaxies in a cosmological simulation by applying a physical model of Hii region and using the photoionization code cloudy. We find that the [Oiii] 88 μm luminosity, LOIII,88, scales with SFR with slightly larger LOIII,88 than a local relation. Some [Oiii] emitters have extended disk-like structure. We propose to use the ratio between [Oiii] 88 μm line and [Oiii] 5007 Å line, which can be detected with James Webb Space Telescope (JWST), to estimate the gas density and the metallicity in HII region of high-redshift [Oiii] emitters.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Carniani, S., Maiolino, R., Pallottini, A., Vallini, L., Pentericci, L., et al. 2017, A&A, 605, A42Google Scholar
De Looze, I., Cormier, D., Lebouteiller, V., Madden, S., Baes, M., et al. 2014, A&A, 568, A62Google Scholar
Ferland, G. J., Porter, R. L., van Hoof, P. A. M., Williams, R. J. R., Abel, N. P., et al. 2013, Rev. Mexicana AyA, 49, 137Google Scholar
Hashimoto, T., Laporte, N., Mawatari, K., Ellis, R. S., Inoue, A. K., et al. 2018a, Nature, 557, 392CrossRefGoogle Scholar
Hashimoto, T., Inoue, A. K., Mawatari, K., Tamura, Y., Matsuo, H., et al. 2018b, ArXiv:1806.00486Google Scholar
Inoue, A. K. 2011, MNRAS, 415, 292010.1111/j.1365-2966.2011.18906.xCrossRefGoogle Scholar
Inoue, A. K., Shimizu, I., Tamura, Y., Matsuo, H., Okamoto, T., & Yoshida, N. 2014, ApJ, 780, L18CrossRefGoogle Scholar
Inoue, A. K., Tamura, Y., Matsuo, H., Mawatari, K., Shimizu, I., et al. 2016, Science, 352, 155910.1126/science.aaf0714CrossRefGoogle Scholar
Konno, A., Ouchi, M., Ono, Y., Shimasaku, K., Shibuya, T., et al. 2014, ApJ, 797, 1610.1088/0004-637X/797/1/16CrossRefGoogle Scholar
Laporte, N., Ellis, R. S., Bauer, F. E., Quénard, D., Roberts-Borsani, G. W., et al. 2017, ApJ, 837, L21CrossRefGoogle Scholar
Lebouteiller, V., Cormier, D., Madden, S. C., Galliano, F., Indebetouw, R., et al. 2012, A&A, 548, A91Google Scholar
Moriwaki, K., Yoshida, N., Shimizu, I., Harikane, Y., Matsuda, Y., et al. 2018, MNRAS, 481, L84CrossRefGoogle Scholar
Nagao, T., Maiolino, R., Marconi, A., & Matsuhara, H. 2011 A&A, 526, A149Google Scholar
Shimizu, I., Inoue, A. K., Okamoto, T., & Yoshida, N. 2016, MNRAS, 461, 356310.1093/mnras/stw1423CrossRefGoogle Scholar
Smit, R, Bouwens, R. J., Carniani, S., Oesch, P. A., Labbé, I., et al. 2018, Nature, 553, 17810.1038/nature24631CrossRefGoogle Scholar
Tamura, Y., Mawatari, K., Hashimoto, T., Inoue, A. K., Zackrisson, E., et al. 2018, ArXiv:1806.04132Google Scholar