Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T03:41:19.318Z Has data issue: false hasContentIssue false

Distortion of magnetic fields in the pre-stellar core Barnard 68

Published online by Cambridge University Press:  01 November 2008

Ryo Kandori
Affiliation:
National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 email: [email protected]
Motohide Tamura
Affiliation:
National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 email: [email protected]
Ken-ichi Tatematsu
Affiliation:
National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 email: [email protected]
Nobuhiko Kusakabe
Affiliation:
National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 email: [email protected]
Yasushi Nakajima
Affiliation:
National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magnetic fields are believed to play an important role in controlling the stability and contraction of molecular cloud cores. In the present study, magnetic fields of a cold pre-stellar core, Barnard 68, have been mapped based on wide-field near-infrared polarimetric observations of background stars. A distinct “hourglass-shaped” magnetic field is identified toward the core, as the observational evidence of magnetic field structure distorted by mass accumulation in a pre-stellar core. Our findings on the geometry of magnetic fields as well as the mass-to-magnetic flux ratio are presented.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Alves, J. F., Lada, C. J., & Lada, E. A. 2001, Nature 409, 159CrossRefGoogle Scholar
Chandrasekhar, S. & Fermi, E. 1953, ApJ 118, 113CrossRefGoogle Scholar
Galli, D. & Shu, F. 1993, ApJ 417, 220CrossRefGoogle Scholar
Girart, J. M., Rao, R., & Marrone, D. P. 2006, Science 313, 812CrossRefGoogle Scholar
Kandori, R., et al. 2006, Proc. SPIE 6269, 159Google Scholar
Lada, C. J., Bergin, E. A., Alves, J. F., & Huard, T. L. 2003, ApJ 586, 286CrossRefGoogle Scholar
Lazarian, A. 2007, J. Quant. Spectrosc. Rad. Trans. 106, 225CrossRefGoogle Scholar
Nakano, T. & Nakamura, T. 1978, PASJ 30, 671Google Scholar
Ostriker, E. C., Stone, J. M., & Gammie, C. F. 2001, ApJ 546, 980CrossRefGoogle Scholar
Shu, F., Adams, F. C., & Lizano, S. 1987, ARA&A 25, 23Google Scholar
Ward-Thompson, D., et al. 2000, ApJ 537, 135CrossRefGoogle Scholar