Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T13:07:53.540Z Has data issue: false hasContentIssue false

Dissecting galactic winds with the SAMI Galaxy Survey

Published online by Cambridge University Press:  09 February 2015

I-Ting Ho
Affiliation:
Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA email: [email protected]
the SAMI Galaxy Survey Team
Affiliation:
Full list of team members is available at http://sami-survey.org/members
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We conduct a case study on a normal star-forming galaxy (z=0.05) observed by the SAMI Galaxy Survey and demonstrate the feasibility and potential of using large integral field spectroscopic surveys to investigate the prevalence of galactic-scale outflows in the local Universe. We perform spectral decomposition to separate the different kinematic components overlapping in the line-of-sight direction that causes the skewed line profiles in the integral field data. The three kinematic components present distinctly different line ratios and kinematic properties. We model the line ratios with the shock/photoionization code mappings iv and demonstrate that the different emission line properties are caused by major galactic outflows that introduce shock excitation in addition to photoionization. These results set a benchmark of the type of analysis that can be achieved by the SAMI Galaxy Survey on large numbers of galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Allen, J. T., Croom, S. M., Konstantopoulos, I. S., et al. 2014, ArXiv e-prints, arXiv:1407.6068Google Scholar
Allen, M. G., Groves, B. A., Dopita, M. A., Sutherland, R. S., & Kewley, L. J. 2008, ApJS, 178, 20Google Scholar
Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5Google Scholar
Bryant, J. J., Owers, M. S., Robotham, A. S. G., et al. 2014, ArXiv e-prints, arXiv:1407.7335Google Scholar
Chen, Y.-M., Tremonti, C. A., Heckman, T. M., et al. 2010, AJ, 140, 445Google Scholar
Croom, S. M., Lawrence, J. S., Bland-Hawthorn, J., et al. 2012, MNRAS, 421, 872Google Scholar
Dopita, M. A. & Sutherland, R. S. 1996, ApJS, 102, 161Google Scholar
Dopita, M. A., Sutherland, R. S., Nicholls, D. C., Kewley, L. J., & Vogt, F. P. A. 2013, ApJS, 208, 10Google Scholar
Fogarty, L. M. R., Bland-Hawthorn, J., Croom, S. M., et al. 2012, ApJ, 761, 169Google Scholar
Heckman, T. M. 2002, in Astronomical Society of the Pacific Conference Series, Vol. 254, Extragalactic Gas at Low Redshift, ed. Mulchaey, J. S. & Stocke, J. T., 292Google Scholar
Ho, I.-T., Kewley, L. J., Dopita, M. A., et al. 2014, MNRAS, in press (arXiv:1407.2411)Google Scholar
Rupke, D. S., Veilleux, S., & Sanders, D. B. 2005, ApJS, 160, 115Google Scholar
Steidel, C. C., Erb, D. K., Shapley, A. E., et al. 2010, ApJ, 717, 289CrossRefGoogle Scholar
Sutherland, R. S. & Dopita, M. A. 1993, ApJS, 88, 253Google Scholar
Veilleux, S., Cecil, G., & Bland-Hawthorn, J. 2005, ARA&A, 43, 769Google Scholar
Weiner, B. J., Coil, A. L., Prochaska, J. X., et al. 2009, ApJ, 692, 187Google Scholar