Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-16T19:23:31.500Z Has data issue: false hasContentIssue false

Dispersion in DLA metallicities and deuterium abundances

Published online by Cambridge University Press:  21 March 2017

Irina Dvorkin
Affiliation:
Sorbonne Universités, UPMC Univ Paris 6 et CNRS, UMR 7095, Institut dAstrophysique de Paris, 98 bis bd Arago, F-75014 Paris, France
Joseph Silk
Affiliation:
Sorbonne Universités, UPMC Univ Paris 6 et CNRS, UMR 7095, Institut dAstrophysique de Paris, 98 bis bd Arago, F-75014 Paris, France AIM-Paris-Saclay, CEA/DSM/IRFU, CNRS, Univ. Paris VII, F-91191 Gif-sur-Yvette, France Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA BIPAC, University of Oxford, 1 Keble Road, Oxford OX1 3RH, UK
Elisabeth Vangioni
Affiliation:
Sorbonne Universités, UPMC Univ Paris 6 et CNRS, UMR 7095, Institut dAstrophysique de Paris, 98 bis bd Arago, F-75014 Paris, France
Patrick Petitjean
Affiliation:
Sorbonne Universités, UPMC Univ Paris 6 et CNRS, UMR 7095, Institut dAstrophysique de Paris, 98 bis bd Arago, F-75014 Paris, France
Keith A. Olive
Affiliation:
William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent chemical abundance measurements of damped Lyman-alpha absorbers (DLAs) revealed a large intrinsic scatter in their metallicities. We discuss a semi-analytic model that was specifically designed to study this scatter by tracing the chemical evolution of the interstellar matter in small regions of the Universe with different mean density, from over- to underdense regions. It is shown that different histories of structure formation in these regions are reflected in the chemical properties of the proto-galaxies. We also address deuterium abundance measurements, which constitute a complementary probe of the star formation and infall histories.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Barkana, R. & Loeb, A., 2004, ApJ, 609, 474 Google Scholar
Behroozi, P. S., Wechsler, R. H. & Conroy, C., 2013, ApJ, 770, 57 Google Scholar
Coc, A., Petitjean, P., Uzan, J.-P., Vangioni, E., Descouvemont, P., Illiadis, C., & Longland, R., 2015, Phys. Rev. D, 92, 12 Google Scholar
Cooke, R. J., Pettini, M., Jorgenson, R. A., Murphy, M. T., & Steidel, C. C., 2014, ApJ, 781, 31 CrossRefGoogle Scholar
Daigne, F., Olive, K. A., Vangioni-Flam, E., Silk, J., & Audouze, J., 2004, ApJ, 617, 693 Google Scholar
Daigne, F., Olive, K. A., Silk, J., Stoehr, F., & Vangioni, E., 2006, ApJ, 647, 773 Google Scholar
Dvorkin, I., Silk, J., Vangioni, E., Petitjean, P., & Olive, K. A., 2015, MNRAS, 452, L36 Google Scholar
Dvorkin, I., Vangioni, E., Silk, J., Petitjean, P., & Olive, K. A., 2016, MNRAS, 458, L104 Google Scholar
Linsky, J. L. et al., 2006, ApJ, 647, 1106 Google Scholar
Parkinson, H., Cole, S., & Helly, J., 2008, MNRAS, 383, 557 Google Scholar
Prochaska, J. X., Herbert-Fort, S., & Wolfe, A. M., 2005, ApJ, 635, 123 Google Scholar
Prodanović, T., Steigman, G., & Fields, B. D., 2010, MNRAS, 406, 1108 Google Scholar
Rafelski, M., Wolfe, A. M., Prochaska, J. X., Neeleman, M., & Mendez, A. J., 2012, ApJ, 755, 89 Google Scholar
Riemer-Sørensen, S. et al., 2015, MNRAS, 447, 2925 Google Scholar