Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T17:46:34.333Z Has data issue: false hasContentIssue false

The Disentangling of Stellar Spectra

Published online by Cambridge University Press:  23 April 2012

P. Hadrava*
Affiliation:
Astronomical Institute, Academy of Sciences, Boční II 1401, CZ - 141 31 Praha 4, Czech Republic email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The techniques of disentangling were originally developed to separate spectra of individual components from time series of spectra of binaries and, simultaneously, to determine either the corresponding radial velocities or directly to solve for orbital parameters.

Generalizations of the disentangling method enable us to include also intrinsic line-profile variability of the component spectra into the underlying model, and thus to solve for additional physical parameters of the stars (either single or components of multiple systems). Depending on the problem in question, it may also be helpful to constrain the space of separated spectra by templates or to bound the solution in the parameter space by photometry, interferometry or other observational data.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Bagnuolo, W. R. & Gies, D. R. 1991, ApJ, 376, 266CrossRefGoogle Scholar
Hadrava, P. 1995, A&AS, 114, 393Google Scholar
Hadrava, P. 1997, A&AS, 122, 581Google Scholar
Hadrava, P. 2004a, Publ. Astron. Inst. ASCR, 92, 1Google Scholar
Hadrava, P. 2004b, Publ. Astron. Inst. ASCR, 92, 15Google Scholar
Hadrava, P. 2007, ASP-CS, 370, 164Google Scholar
Hadrava, P. 2009a, A&A, 494, 399Google Scholar
Hadrava, P. 2009b, arXiv: 0909.0172Google Scholar
Hadrava, P., Šlechta, M. & Škoda, P. 2010, A&A, 507, 397Google Scholar
Hensberge, H. 2007, ASP-CS, 364, 275Google Scholar
Hill, G. 1993, ASP-CS, 38, 127Google Scholar
Ilijić, S. 2004, ASP-CS, 318, 107Google Scholar
Ilijić, S., Hensberge, H. et al. , 2004, ASP-CS, 318, 111Google Scholar
Kallrath, J. & Milone, E. F. 1999 1, 20092, Eclipsing binary stars: modeling and analysis, Springer-Verlag, New YorkCrossRefGoogle Scholar
Marchenko, S. V., Moffat, A. F. J., & Eenens, P. J. R. 1998, PASP, 110, 1416CrossRefGoogle Scholar
Nardetto, N., Fokin, A. et al. , 2004, A&A, 428, 131Google Scholar
Pavlovski, K. & Hensberge, H. 2010, ASP-CS, 435, 207Google Scholar
Pietrzyński, G., Thompson, I. B. et al. , 2010, Nature, 468, 542CrossRefGoogle Scholar
Rucinski, S. 2002, AJ, 124, 1746CrossRefGoogle Scholar
Schlesinger, F. 1909, Publ. of Allegheny Obs., 1, 123Google Scholar
Simon, K. P. & Sturm, E. 1994, A&A, 281, 286Google Scholar
Škoda, P. & Hadrava, P. 2010, ASP-CS, 435, 71Google Scholar
Wilson, R. E. 2008, ApJ, 672, 575CrossRefGoogle Scholar
Zverko, J. & Žižňovský, J., Khokhlova, V. L. 1997, Contrib. Astron. Obs. Skalnaté Pleso, 27, 41Google Scholar
Zwahlen, N., North, P. et al. , 2004, A&A, 425, L45Google Scholar