Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T05:54:42.566Z Has data issue: false hasContentIssue false

Discrete Absorption Components from 3-D spot models of hot star winds

Published online by Cambridge University Press:  16 August 2023

F. A. Driessen
Affiliation:
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D/2401, 3001 Leuven, Belgium National Solar Observatory, 22 Ohi‘a Ku St., Makawao, HI 96768, USA
N. D. Kee
Affiliation:
National Solar Observatory, 22 Ohi‘a Ku St., Makawao, HI 96768, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The winds of hot, massive stars are variable from processes happening on both large and small spatial scales. A particular case of such wind variability is ‘discrete-absorption components’ (DACs) that manifest themselves as outward moving density features in UV resonance line spectra. Such DACs are believed to be caused by large-scale spiral-shaped density structures in the stellar wind. We consider novel 3-D radiation-hydrodynamic models of rotating hot star winds and study the emergence of co-rotating spiral structures due to a local (pseudo-)magnetic spot on the stellar surface. Subsequently, the hydrodynamic models are used to retrieve DAC spectral signatures in synthetic UV spectra created from a 3-D short-characteristics radiative transfer code.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Cantiello, M., Langer, N., Brott, I., et. al (2009), A&A, 499, 27910.1051/0004-6361/200911643CrossRefGoogle Scholar
Cantiello, M., & Braithwaite, J. (2011), A&A, 534, A140 10.1051/0004-6361/201117512CrossRefGoogle Scholar
Castor, J. I., Abbott, D. C., Klein, R. I. (1975), ApJ, 195, 15710.1086/153315CrossRefGoogle Scholar
Cranmer, S. R., & Owocki, S. P. (1996), ApJ, 462, 469 10.1086/177166CrossRefGoogle Scholar
David-Uraz, A., Owocki, S. P., Wade, G. A., et al. (2017), MNRAS, 470, 3672 10.1093/mnras/stx1478CrossRefGoogle Scholar
Driessen, F. A., Sundqvist, J. O., & Dagore, A. (2022), A&A, 663, A40 10.1051/0004-6361/202142844CrossRefGoogle Scholar
Gayley, K. G., & Owocki, S. P. (2000), ApJ, 537, 461 10.1086/309002CrossRefGoogle Scholar
Hennicker, L., Puls, J., Kee, N. D., Sundqvist, J. O. (2020), A&A, 633, A16 10.1051/0004-6361/201936584CrossRefGoogle Scholar
Howarth, I. D., & Prinja, R. K. (1989), ApJ, 69, 527 10.1086/191321CrossRefGoogle Scholar
Jermyn, A. S., Cantiello, M. (2020), ApJ, 900, 113 10.3847/1538-4357/ab9e70CrossRefGoogle Scholar
Kaper, L., Henrichs, H. F., Nichols, J. S., et al. (1999), A&A, 344, 231 Google Scholar
Lobel, A., & Blomme, R. (2008), ApJ, 678, 408 10.1086/529129CrossRefGoogle Scholar
Massa, D., & Prinja, R. K. (2015), ApJ, 809, 12 10.1088/0004-637X/809/1/12CrossRefGoogle Scholar
Mullan, D. J. (1986), A&A, 165, 157 Google Scholar
Poniatowski, L. G., Kee, N. D., Sundqvist, J. O., et al. (2022), A&A, in pressGoogle Scholar
Sudnik, N. P., & Henrichs, H. F. (2016), A&A, 594, A16 10.1051/0004-6361/201628529CrossRefGoogle Scholar