Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T14:09:27.249Z Has data issue: false hasContentIssue false

Discovery of Carbon Radio Recombination Lines in M82

Published online by Cambridge University Press:  09 February 2015

Leah K. Morabito
Affiliation:
Leiden Observatory, Leiden University, P. O. Box 9513, 2300 RA Leiden, The Netherlands email: [email protected]
J. B. R. Oonk
Affiliation:
Leiden Observatory, Leiden University, P. O. Box 9513, 2300 RA Leiden, The Netherlands email: [email protected] Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo, The Netherlands
Francisco Salgado
Affiliation:
Leiden Observatory, Leiden University, P. O. Box 9513, 2300 RA Leiden, The Netherlands email: [email protected]
M. Carmen Toribio
Affiliation:
Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo, The Netherlands
Xander Tielens
Affiliation:
Leiden Observatory, Leiden University, P. O. Box 9513, 2300 RA Leiden, The Netherlands email: [email protected]
Huub Röttgering
Affiliation:
Leiden Observatory, Leiden University, P. O. Box 9513, 2300 RA Leiden, The Netherlands email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cold, diffuse HI clouds are a key component of the interstellar medium (ISM), and play an important role in the evolution of galaxies. Carbon radio recombination lines (CRRLs) trace this ISM stage, and with the enormous sensitivity of LOFAR we have already begun to map and constrain the physical properties of this gas in our own Galaxy. Using LOFAR's low band antenna, we have observed M 82 and present the first ever extragalactic detection of CRRLs. We stack 22 lines to find a 8.5-sigma detection. The line peak to continuum ratio is ∼0.003, with a FWHM of 31 km s−1. The CRRL feature is consistent with an origin in the cold, neutral medium in the direction of the nucleus of M 82.

Keywords

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Fenech, D., Beswick, R., Muxlow, T. W. B., Pedlar, A., & Argo, M. K. 2010, MNRAS, 408, 607CrossRefGoogle Scholar
Gandhi, P., Isobe, N., Birkinshaw, M., et al. 2011, PASJ, 63, 505CrossRefGoogle Scholar
Jacobs, B. A., Rizzi, L., Tully, R. B., et al. 2009, AJ, 138, 332CrossRefGoogle Scholar
Kepley, A. A., Leroy, A. K., Frayer, D., et al. 2014, ApJ, 780, L13CrossRefGoogle Scholar
McDonald, A. R., Muxlow, T. W. B., Wills, K. A., Pedlar, A., & Beswick, R. J. 2002, MNRAS, 334, 912Google Scholar
Muxlow, T. W. B., Pedlar, A., Wilkinson, P. N., et al. 1994, MNRAS, 266, 455CrossRefGoogle Scholar
Oonk, J. B. R., van Weeren, R. J., Salgado, F., et al. 2014, MNRAS, 437, 3506Google Scholar
Rodriguez-Rico, C. A., Viallefond, F., Zhao, J.-H., Goss, W. M., & Anantharamaiah, K. R. 2004, ApJ, 616, 783Google Scholar
Savitzky, A. & Golay, M. J. E. 1964, Analytical Chemistry, 36, 1627Google Scholar
Shaver, P. A. 1975, Pramana, 5, 1CrossRefGoogle Scholar
Shaver, P. A., Churchwell, E., & Rots, A. H. 1977, A&A, 55, 435Google Scholar
Shaver, P. A. 1978, A&A, 68, 97Google Scholar
Walmsley, C. M. & Watson, W. D. 1982, ApJ, 260, 317Google Scholar
Wills, K. A., Pedlar, A., Muxlow, T. W. B., & Wilkinson, P. N. 1997, MNRAS, 291, 517Google Scholar
Yun, M. S., Ho, P. T. P., & Lo, K. Y. 1993, ApJ, 411, L17Google Scholar