Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T14:01:46.975Z Has data issue: false hasContentIssue false

Differential Rotation of the Solar Chromosphere using multidecadal Ca ii K Spectroheliograms

Published online by Cambridge University Press:  23 December 2024

Dibya Kirti Mishra*
Affiliation:
Aryabhatta Research Institute of Observational Sciences, Nainital-263002, Uttarakhand, India Mahatma Jyotiba Phule Rohilkhand University, Bareilly-243006, Uttar Pradesh, India
Srinjana Routh
Affiliation:
Aryabhatta Research Institute of Observational Sciences, Nainital-263002, Uttarakhand, India Mahatma Jyotiba Phule Rohilkhand University, Bareilly-243006, Uttar Pradesh, India
Bibhuti Kumar Jha
Affiliation:
Southwest Research Institute, Boulder, CO 80302, USA
Subhamoy Chatterjee
Affiliation:
Southwest Research Institute, Boulder, CO 80302, USA
Dipankar Banerjee*
Affiliation:
Aryabhatta Research Institute of Observational Sciences, Nainital-263002, Uttarakhand, India Indian Institute of Astrophysics, Koramangala, Bangalore 560034, India Center of Excellence in Space Sciences India, IISER Kolkata, Mohanpur 741246, West Bengal, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The study of the differential rotation in the chromosphere of the Sun is of significant importance as it provides valuable insights into the rotational behaviour of the solar atmosphere at higher altitudes and the coupling mechanism between the various layers of the solar atmosphere. In this work, we employed the image correlation technique, explicitly focusing on plages, intending to estimate the chromospheric differential rotation. For this purpose, we have utilized Ca ii K spectroheliograms (1907 – 2007) from the Kodaikanal Solar Observatory (KoSO), recently calibrated with a better technique to ensure accuracy. Our analysis indicates that plages in the chromosphere exhibit faster rotation and a smaller latitudinal gradient when compared to the rotation rate obtained through sunspot tracking. Furthermore, we investigate the temporal analysis of the chromospheric differential rotation parameters across various solar cycles.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Antonucci, E., Azzarelli, L., Casalini, P., Cerri, S., & Denoth, F. 1979, Chromospheric rotation. II. Dependence on the size of chromospheric features. Solar Phys., 63(1), 1730.CrossRefGoogle Scholar
Bertello, L., Pevtsov, A. A., & Ulrich, R. K. 2020, 70 Years of Chromospheric Solar Activity and Dynamics. Astrophys. J., 897(2), 181.CrossRefGoogle Scholar
Chatterjee, S., Banerjee, D., & Ravindra, B. 2016, A Butterfly Diagram and Carrington Maps for Century-long CA II K Spectroheliograms from The Kodaikanal Observatory. Astrophys. J., 827(1), 87.CrossRefGoogle Scholar
Chatzistergos, T., Ermolli, I., Krivova, N. A., Solanki, S. K., Banerjee, D., Barata, T., Belik, M., Gafeira, R., Garcia, A., Hanaoka, Y., Hegde, M., Klimeš, J., Korokhin, V. V., Lourenço, A., Malherbe, J.-M., Marchenko, G. P., Peixinho, N., Sakurai, T., & Tlatov, A. G. 2020, Analysis of full-disc Ca II K spectroheliograms - III. Plage area composite series covering 1892–2019. Astronomy & Astrophysics, 639, A88.CrossRefGoogle Scholar
Howard, R. & Harvey, J. 1970, Spectroscopic determinations of solar rotation. Solar Physics 1970 12:1, 12, 2351.Google Scholar
Jha, B. K. 2022,. Long-term Study of the Sun and Its Implications to Solar Dynamo Models. PhD thesis, Department of Physics, Pondicherry University.Google Scholar
Jha, B. K., Priyadarshi, A., Mandal, S., Chatterjee, S., & Banerjee, D. 2021, Measurements of Solar Differential Rotation Using the Century Long Kodaikanal Sunspot Data. Solar Phys., 296(1), 25.CrossRefGoogle Scholar
Komm, R., Howe, R., Hill, F., & Hernández, I. G. 2008, Subsurface zonal flows. Solar Physics 2008 254:1, 254, 115.Google Scholar
Li, K. J., Wan, M., & Feng, W. 2023, The quiet chromosphere: differential rotation. Mon. Not. Roy. Astron. Soc., 520(4), 59285937.CrossRefGoogle Scholar
Mishra, D. K., Routh, S., Jha, B. K., Chatzistergos, T., Judhajeet, B., Chatterjee Subhamoy Banerjee, D., & Ermolli, I. 2024, Differential Rotation of the Solar Chromosphere: A Century-long Perspective from Kodaikanal Solar Observatory Ca ii K Data. Astrophys. J., 961, 40.CrossRefGoogle Scholar
Sharma, J., Kumar, B., Malik, A. K., & Vats, H. O. 2020, On the variation of solar coronal rotation using SDO/AIA observations. Monthly Notices of the Royal Astronomical Society, 492(4), 53915398.CrossRefGoogle Scholar
Singh, J. & Prabhu, T. P. 1985, Variations in the solar rotation rate derived from Ca+ K plage areas. Solar Phys., 97(1), 203212.CrossRefGoogle Scholar
Thompson, W. T. 2006, Coordinate systems for solar image data. Astron. Astrophys., 449(2), 791803.CrossRefGoogle Scholar