Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T14:43:39.706Z Has data issue: false hasContentIssue false

The dichotomy between strong and ultra-weak magnetic fields among intermediate-mass stars

Published online by Cambridge University Press:  07 August 2014

François Lignières
Affiliation:
CNRS, Institut de Recherche en Astrophysique et Planétologie 14 avenue Edouard Belin, 31400 Toulouse, France email: [email protected] Université de Toulouse, UPS-OMP, IRAP 31400 Toulouse, France
Pascal Petit
Affiliation:
CNRS, Institut de Recherche en Astrophysique et Planétologie 14 avenue Edouard Belin, 31400 Toulouse, France email: [email protected] Université de Toulouse, UPS-OMP, IRAP 31400 Toulouse, France
Michel Aurière
Affiliation:
CNRS, Institut de Recherche en Astrophysique et Planétologie 14 avenue Edouard Belin, 31400 Toulouse, France email: [email protected] Université de Toulouse, UPS-OMP, IRAP 31400 Toulouse, France
Gregg A. Wade
Affiliation:
Department of Physics, Royal Military College of CanadaPO Box 17000, Station Forces, Kingston, Ontario K7K 7B4, Canada
Torsten Böhm
Affiliation:
CNRS, Institut de Recherche en Astrophysique et Planétologie 14 avenue Edouard Belin, 31400 Toulouse, France email: [email protected] Université de Toulouse, UPS-OMP, IRAP 31400 Toulouse, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Until recently, the detection of magnetic fields at the surface of intermediate-mass main-sequence stars has been limited to Ap/Bp stars, a class of chemically peculiar stars. This class represents no more than 5-10% of the stars in this mass range. This small fraction is not explained by the fossil field paradigm that describes the Ap/Bp type magnetism as a remnant of an early phase of the star-life. Also, the limitation of the field measurements to a small and special group of stars is obviously a problem to study the effect of the magnetic fields on the stellar evolution of a typical intermediate-mass star.

Thanks to the improved sensitivity of a new generation of spectropolarimeters, a lower bound to the magnetic fields of Ap/Bp stars, a two orders of magnitude desert in the longitudinal magnetic field and a new type of sub-gauss magnetism first discovered on Vega have been identified. These advances provide new clues to understand the origin of intermediate-mass magnetism as well as its influence on stellar evolution. In particular, a scenario has been proposed whereby the magnetic dichotomy between Ap/Bp and Vega-like magnetism originate from the bifurcation between stable and unstable large scale magnetic configurations in differentially rotating stars. In this paper, we review these recent observational findings and discuss this scenario.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Abt, H. A. 2009, AJ, 138, 28Google Scholar
Alecian, E. 2013, arXiv:1310.1725Google Scholar
Alina, D., Petit, P., Lignières, F., et al. 2012, AIP Conference Series, 1429, 82CrossRefGoogle Scholar
Arlt, R. & Rüdiger, G. 2011, MNRAS, 412, 107CrossRefGoogle Scholar
Aurière, M. & Lignières, F. 2013, private communicationGoogle Scholar
Aurière, M., Wade, G. A., Lignières, F., et al. 2010, A&A, 523, A40Google Scholar
Aurière, M., Wade, G. A., Konstantinova-Antova, R., et al. 2009, A&A, 504, 231Google Scholar
Aurière, M., Konstantinova-Antova, R., Petit, P., et al. 2008, A&A, 491, 499Google Scholar
Aurière, M., Wade, G. A., Silvester, J., et al. 2007, A&A, 475, 1053Google Scholar
Babcock, H. W. 1947, ApJ, 105, 105Google Scholar
Bagnulo, S., Landstreet, J. D., Fossati, L., & Kochukhov, O. 2012, A&A, 538, A129Google Scholar
Balona, L. A. 2011, MNRAS, 415, 1691Google Scholar
Braithwaite, J. & Cantiello, M. 2013, MNRAS, 428, 2789CrossRefGoogle Scholar
Braithwaite, J. 2009, MNRAS, 397, 763CrossRefGoogle Scholar
Bychkov, V. D., Bychkova, L. V., & Madej, J. 2005, A&A, 430, 1143Google Scholar
Donati, J.-F. & Landstreet, J. D. 2009, ARA&A, 47, 333Google Scholar
Deheuvels, S., García, R. A., Chaplin, W. J., et al. 2012, ApJ, 756, 19Google Scholar
Ferrario, L., Pringle, J. E., Tout, C. A., & Wickramasinghe, D. T. 2009, MNRAS, 400, L71Google Scholar
Kochukhov, O., Makaganiuk, V., Piskunov, N., et al. 2011, A&A, 534, L13Google Scholar
Kochukhov, O. 2013, arXiv:1309.6313Google Scholar
Landstreet, J. D. 1982, ApJ, 258, 639Google Scholar
Lignières, F., Petit, P., Böhm, T., & Aurière, M. 2009, A&A, 500, L41Google Scholar
López Ariste, A. 2002, ApJ, 564, 379Google Scholar
Makaganiuk, V., Kochukhov, O., Piskunov, N., et al. 2011, A&A, 525, A97Google Scholar
Michaud, G., Charland, Y., Vauclair, S., & Vauclair, G. 1976, ApJ, 210, 447Google Scholar
Michaud, G. 1970, ApJ, 160, 641Google Scholar
Monnier, J. D., Che, X., Zhao, M., et al. 2012, ApJL, 761, L3Google Scholar
Petit, P., Lignières, F., Aurière, M., et al. 2011, A&A, 532, L13Google Scholar
Petit, P., Lignières, F., Wade, G. A., et al. 2010, A&A, 523, A41Google Scholar
Petit, P., Donati, J.-F., Aurière, M., et al. 2005, MNRAS, 361, 837CrossRefGoogle Scholar
Royer, F., Zorec, J., & Gómez, A. E. 2007, A&A, 463, 671Google Scholar
Shorlin, S. L. S., Wade, G. A., Donati, J.-F., et al. 2002, A&A, 392, 637Google Scholar
Takeda, Y., Kawanomoto, S., & Ohishi, N. 2008, ApJ, 678, 446CrossRefGoogle Scholar
Tutukov, A. V. & Fedorova, A. V. 2010, Astronomy Reports, 54, 156Google Scholar
Wade, G. A., Grunhut, J., Alecian, E., et al. 2013, arXiv:1310.3965Google Scholar
Wade, G. A., Aurière, M., Bagnulo, S., et al. 2006, A&A, 451, 293Google Scholar