Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T02:07:07.207Z Has data issue: false hasContentIssue false

DIBs, Interstellar Dust, and Extinction

Published online by Cambridge University Press:  21 February 2014

G. C. Clayton*
Affiliation:
Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The relationship between DIBs and dust is still unknown. The correlation between reddening and DIB strength means that the DIBs are mixed in with the dust and gas in interstellar clouds. The DIBs are relatively stronger in the diffuse interstellar medium than in dense clouds. There is only a weak correlation between the DIBs and the UV extinction parameters including the 2175 Å bump strength and the far-UV rise. In addition, the bump dust grains are sometimes polarized, while the DIBs are not. However, observations of DIBs in the SMC show that when the 2175 Å bump is weak or missing so are the DIBs. Two of the four sightlines that deviate strongly from the CCM UV extinction in the Galaxy show weak DIBs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Adamson, A. J. & Whittet, D. C. B. 1995, ApJ, 448, L49Google Scholar
Adamson, A. J., Whittet, D. C. B., & Duley, W. W. 1991, MNRAS, 252, 234CrossRefGoogle Scholar
Benvenuti, P. & Porceddu, I. 1989, A&A, 223, 329Google Scholar
Cami, J., Sonnentrucker, P., Ehrenfreund, P., & Foing, B. H. 1997, A&A, 326, 822Google Scholar
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245CrossRefGoogle Scholar
Clayton, G. C., et al. 1992, ApJ, 385, L53CrossRefGoogle Scholar
Clayton, G. C., et al. 2003, ApJ, 592, 947CrossRefGoogle Scholar
Cox, N. L. J., Cordiner, M. A., Cami, J., Foing, B. H., Sarre, P. J., Kaper, L., & Ehrenfreund, P. 2006, A&A, 447, 991Google Scholar
Cox, N. L. J., et al. 2007, A&A, 470, 941Google Scholar
Danks, A. C. 1980, PASP, 92, 52CrossRefGoogle Scholar
Desert, F.-X., Jenniskens, P., & Dennefeld, M. 1995, A&A, 303, 223Google Scholar
Fitzpatrick, E. L. & Massa, D. 1990, ApJS, 72, 163CrossRefGoogle Scholar
Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A. U., & Wolff, M. J. 2003, ApJ, 594, 279Google Scholar
Jenniskens, P. & Greenberg, J. M. 1993, A&A, 274, 439Google Scholar
Krelowski, J. & Walker, G. A. H. 1987, ApJ, 312, 860Google Scholar
Merrill, P. W. 1936, ApJ, 83, 126Google Scholar
Merrill, P. W. & Wilson, O. C. 1938, ApJ, 87, 9Google Scholar
Nandy, K. & Thompson, G. I. 1975, MNRAS, 173, 237CrossRefGoogle Scholar
Seab, C. G. & Snow, T. P. Jr. 1984, ApJ, 277, 200CrossRefGoogle Scholar
Snow, T. P., Welty, D. E., Thorburn, J., Hobbs, L. M., McCall, B. J., Sonnentrucker, P., & York, D. G. 2002, ApJ, 573, 670CrossRefGoogle Scholar
Snow, T. P. Jr. & Cohen, J. G. 1974, ApJ, 194, 313CrossRefGoogle Scholar
Trumpler, R. J. 1930, PASP, 42, 267Google Scholar
Valencic, L., Gordon, K., & Clayton, G. 2004a, in Bulletin of the American Astronomical Society, Vol. 36, American Astronomical Society Meeting Abstracts, 1441Google Scholar
Valencic, L. A., Clayton, G. C., & Gordon, K. D. 2004b, ApJ, 616, 912Google Scholar
Weingartner, J. C. & Draine, B. T. 2001, ApJ, 548, 296Google Scholar
Witt, A. N., Bohlin, R. C., & Stecher, T. P. 1981, ApJ, 244, 199Google Scholar
Witt, A. N., Bohlin, R. C., & Stecher, T. P. 1983, ApJ, 267, L47CrossRefGoogle Scholar
Wolff, M. J., Clayton, G. C., Kim, S.-H., Martin, P. G., & Anderson, C. M. 1997, ApJ, 478, 395Google Scholar
Xiang, F. Y., Li, A., & Zhong, J. X. 2011, ApJ, 733, 91CrossRefGoogle Scholar