Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T21:20:40.119Z Has data issue: false hasContentIssue false

Diagnostics of the Supernova Engine

Published online by Cambridge University Press:  17 October 2017

Chris L. Fryer
Affiliation:
CCS-2, MS D409, Los Alamos Naitonal Laboratory, Los Alamos, NM 87544 email: [email protected]
Carola Ellinger
Affiliation:
CCS-2, MS D409, Los Alamos Naitonal Laboratory, Los Alamos, NM 87544 email: [email protected]
Patrick A. Young
Affiliation:
Department of Physics and Astronomy, Arizona State University, P.O. Box 1504, Tempe, AZ 85287-1504
Gregory Vance
Affiliation:
Department of Physics and Astronomy, Arizona State University, P.O. Box 1504, Tempe, AZ 85287-1504
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The standard engine behind core-collapse supernovae is continuously evolving with increasingly detailed models. At this time, most simulations focus on an engine invoking turbulence above the proto-neutron star, sometimes termed the “convection-enhanced” engine. Here we review this engine and why it has become the standard for normal supernovae, focusing on a wide set of observations that provide insight into the supernova engine.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Baade, W. & Zwicky, F. 1934, Phys. Rev., 46, 76 CrossRefGoogle Scholar
Bionta, R. M., Blewitt, G., Bratton, C. B., Casper, D., & Ciocio, A. 1987, PRL, 58, 1494 CrossRefGoogle Scholar
Blondin, J. M., Lundqvist, P., & Chevalier, R. A. 1996, ApJ, 472, 257 CrossRefGoogle Scholar
Blondin, J. M., Mezzacappa, A., & DeMarino, C. 2003, ApJ, 584, 971 CrossRefGoogle Scholar
Buras, R., Rampp, M., Janka, H.-T., & Kifonidis, K. 2006, A&A, 447, 1049 Google Scholar
Burrows, A. & Lattimer, J. M. 1988, Phys. Rep., 163, 51 Google Scholar
Colgate, S. A. & Johnson, M. H. 1960, PRL, 5, 235 Google Scholar
Colgate, S. A. & White, R. H. 1966, ApJ, 143, 626 CrossRefGoogle Scholar
Epstein, R. I. 1979, ApJ, 188, 305 Google Scholar
Fragos, T. & McClintock, J. E. 2015, ApJ, 800, 17 Google Scholar
Fryer, C. L. & Heger, A. 2000, ApJ, 541, 1033 CrossRefGoogle Scholar
Fryer, C. L. & Kalogera, V. 2001, ApJ, 554, 548 CrossRefGoogle Scholar
Fryer, C. L. & Warren, M. 2002, ApJ, 574, L65 Google Scholar
Fryer, C. L. & Young, P. A. 2007, ApJ, 659, 389 CrossRefGoogle Scholar
Fryer, C. L., Belczynski, K., Wiktorowicz, G., Dominik, M., Kalogera, V., & Holz, D. 2012, ApJ, 749, 91 Google Scholar
Grefenstette, B. W. et al. 2014, Nature, 506, 339 Google Scholar
Grefenstette, B. W. et al. 2017, ApJ, 834, 19 Google Scholar
Herant, M., Benz, W., & Colgate, S. 1992, ApJ, 395, 642 CrossRefGoogle Scholar
Herant, M., Benz, W., Hix, W. R., Fryer, C. L., & Colgate, S. A. 1994, ApJ, 435, 339 CrossRefGoogle Scholar
Herant, M. 1995, Phys. Rep., 256, 117 CrossRefGoogle Scholar
Houck, J. C., & Chevalier, R. A. 1992 ApJ, 395, 592 Google Scholar
Hirata, K., Kajita, T., Koshiba, M., Nakahata, M., & Oyama, Y. 1987, PRL, 58, 1490 Google Scholar
Hungerford, A. L., Fryer, C. L., & Warren, M. S. 2003, ApJ, 594, 390 Google Scholar
Hwang, U. et al. 2004, ApJ, 615, L117 Google Scholar
Keil, W., Janka, H.-T., & Müller, E. 1996, ApJ, 473, L111 Google Scholar
Lentz, E. J., Bruenn, S. W., Hix, W. R., Mezzacappa, A., Messer, O. E. B., Endeve, E., Blondin, J. M., Harris, J. A., Marronetti, P., & Yakunin, K. N. 2015, ApJ, 807, L31 Google Scholar
Pinto, P. A. & Woosley, S. E. 1988, ApJ, 329, 820 Google Scholar
Thorsett, S. E. & Chakrabarty, D. 1999, ApJ, 512, 288 CrossRefGoogle Scholar
Woosley, S. E. 1993, ApJ, 405, 273 Google Scholar