Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T06:56:15.705Z Has data issue: false hasContentIssue false

Determining the effect of a non-uniform AGB outflow on its chemistry

Published online by Cambridge University Press:  04 September 2018

M. Van de Sande
Affiliation:
Department of Physics and Astronomy, Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium email: [email protected]
J. O. Sundqvist
Affiliation:
Department of Physics and Astronomy, Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium email: [email protected]
T. J. Millar
Affiliation:
School of Mathematics and Physics, Queens University Belfast, University Road, Belfast BT7 1NN, UK
L. Decin
Affiliation:
Department of Physics and Astronomy, Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The molecular composition of the stellar outflows of AGB stars is determined by the stellar elemental carbon-to-oxygen abundance ratio, together with the physical circumstances in the innermost region of the outflow. Near the stellar surface, thermal equilibrium (TE) can be assumed. This leads to a certain molecular composition with a O- or C-rich signature. However, several molecular species have been detected that are not expected to be present in the inner region under the assumption of TE chemistry. As a solution to explain the presence of these unexpected species, non-equilibrium chemistry in the inner region of the outflow has been proposed. The outflows of AGB stars are generally not spherically symmetric or homogeneous, which influences the penetration of interstellar UV photons throughout the outflow. We investigate the effect of a clumpy, non-homogeneous outflow on the composition of the inner region by introducing a simple porosity formalism in our chemical model.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Agúndez, M., Cernicharo, J., & Guélin, M., 2010, ApJ, 724, L133Google Scholar
Agúndez, M., Cernicharo, J., Quintana-Lacaci, G. et al., 2017, A&A, 601, A4Google Scholar
Bujarrabal, V., Fuente, A., & Omont, A., 1994, A&A, 285, 247Google Scholar
Cherchneff, I., 2006, A&A, 456, 1001Google Scholar
Decin, L., Agúndez, M., Barlow, M. J. et al., 2010, A&A, 467, 64Google Scholar
Duari, D., Cherchneff, I., & Willacy, K., 1999, A&A, 341, L47Google Scholar
Gobrecht, D., Cherchneff, I., Sarangi, A. et al., 2016, A&A, 585, A6Google Scholar
Justtanont, K., de Jong, T., Helmich, F. P. et al., 1996, A&A, 315, L127Google Scholar
Keady, J. J. & Ridgway, S. T., 1993, A&A, 564, A88Google Scholar
Kervella, P., Montargès, M., Ridgway, S. T. et al., 2014, ApJ, 406, 199Google Scholar
Khouri, T., Maercker, M., Waters, L. B. F. M. et al., 2016, A&A, 591, A70Google Scholar
Maercker, M., Mohamed, S., Vlemmings, W. H. T. et al., 1995, Nature, 490, 232Google Scholar
McElroy, D., Walsh, C., Markwick, A. J. et al., 2013, A&A, 550, A36Google Scholar
Menten, K. M. & Alcolea, J., 1995, ApJ, 448, 416Google Scholar
Omont, A., Lucas, R., Morris, M., & Guilloteau, S., 1993, A&A, 267, 490Google Scholar
Owocki, S. P., Gayley, K. G., & Shaviv, N. J., 2004, ApJ, 616, 525Google Scholar
Owocki, S. P. & Cohen, D. H., 2006, ApJ, 648, 565Google Scholar
Sundqvist, J. O., Owocki, S. P., Cohen, D. H. et al., 2012, MNRAS, 420, 1553Google Scholar
Sundqvist, J. O., Puls, J., & Owocki, S. P., 2014, A&A, 568, A59Google Scholar