Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T19:27:50.641Z Has data issue: false hasContentIssue false

Detections of far-infrared [OIII] and dust emission in a galaxy at z = 8.312: Early metal enrichment in the heart of the reionization era

Published online by Cambridge University Press:  10 June 2020

Y. Tamura
Affiliation:
Department of Physics, Nagoya University, Japan email: [email protected]
K. Mawatari
Affiliation:
Institute for Cosmic Ray Research, The University of Tokyo, Japan
T. Hashimoto
Affiliation:
Department of Environmental Science and Technology, Osaka Sangyo University, Japan National Astronomical Observatory of Japan, Japan
A. K. Inoue
Affiliation:
Department of Environmental Science and Technology, Osaka Sangyo University, Japan
E. Zackrissonm
Affiliation:
Department of Physics and Astronomy, Uppsala University, Sweden
L. Christensen
Affiliation:
Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Denmark
C. Binggeli
Affiliation:
Department of Physics and Astronomy, Uppsala University, Sweden
Y. Matsuda
Affiliation:
National Astronomical Observatory of Japan, Japan
H. Matsuo
Affiliation:
National Astronomical Observatory of Japan, Japan
T. T. Takeuchi
Affiliation:
Department of Physics, Nagoya University, Japan email: [email protected]
R. S. Asano
Affiliation:
Department of Physics, Nagoya University, Japan email: [email protected]
K. Sunaga
Affiliation:
Department of Physics, Nagoya University, Japan email: [email protected]
I. Shimizu
Affiliation:
Department of Earth & Space Science, Osaka University, Japan
T. Okamoto
Affiliation:
Department of Cosmosciences, Hokkaido University, Japan
N. Yoshida
Affiliation:
Department of Physics, The University of Tokyo, Japan Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Japan
M. Lee
Affiliation:
Department of Physics, Nagoya University, Japan email: [email protected] National Astronomical Observatory of Japan, Japan
T. Shibuya
Affiliation:
Department of Computer Science, Kitami Institute of Technology, Japan
Y. Taniguchi
Affiliation:
The Open University of Japan, Japan
H. Umehata
Affiliation:
RIKEN Cluster for Pioneering Research, Japan
B. Hatsukade
Affiliation:
Institute of Astronomy, The University of Tokyo, Japan
K. Kohno
Affiliation:
Institute of Astronomy, The University of Tokyo, Japan
K. Ota
Affiliation:
Kyoto University Research Administration Office, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present ALMA detection of the [O iii] 88 μm line and 850 μm dust continuum emission in a Y-dropout Lyman break galaxy, MACS0416_Y1. The [O iii] detection confirms the object with a spectroscopic redshift to be z = 8.3118±0.0003. The 850 μm continuum intensity (0.14 mJy) implies a large dust mass on the order of 4×106M. The ultraviolet-to-far infrared spectral energy distribution modeling, where the [O iii] emissivity model is incorporated, suggests the presence of a young (τage ≍ 4 Myr), star-forming (SFR ≍ 60Myr−1), and moderately metal-polluted (Z ≍ 0.2Z) stellar component with a stellar mass of 3 × 108M. An analytic dust mass evolution model with a single episode of star formation does not reproduce the metallicity and dust mass in ≍ 4 Myr, suggesting an underlying evolved stellar component as the origin of the dust mass.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Asano, R., Takeuchi, T., Hirashita, H., & Inoue, A. K. 2013, Earth, Planet. & Space, 65, 213CrossRefGoogle Scholar
Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000CrossRefGoogle Scholar
Calzetti, D., Armus, L., Bohlin, R. C., Kinney, A. L., Koornneef, J., & Storchi-Bergmann, T. 2000, ApJ, 533, 682CrossRefGoogle Scholar
Hashimoto, T., Laporte, N., Mawatari, K., Ellis, R. S., Inoue, A. K., Zackrisson, E., Roberts-Borsani, G., Zheng, W., et al. 2018, Nat., 557, 392CrossRefGoogle Scholar
Inoue, A. K. 2011, MNRAS, 415, 2920CrossRefGoogle Scholar
Inoue, A. K., Shimizu, I., Tamura, Y., Matsuo, H., Okamoto, T. & Yoshida, N. 2014, MNRAS, 442, 1805CrossRefGoogle Scholar
Inoue, A. K., Tamura, Y., Matsuo, H., Mawatari, K., Shimizu, I., Shibuya, T., Ota, K., Yoshida, N., et al. 2016, Science, 352, 155910.1126/science.aaf0714CrossRefGoogle Scholar
Laporte, N., Streblyanska, A., Kim, S., Pelló, R., Bauer, F. E., Bina, D., Brammer, G., De Leo, M. A., et al. 2015, A&A, 575, A92Google Scholar
Mawatari, K., et al. 2018, Proc. IAU Symp. No. 341, in this volumeGoogle Scholar
Oesch, P. A., Bouwens, R. J., Illingworth, G. D., Labbé, I., & Stefanon, M. 2018, ApJ, 855, 105CrossRefGoogle Scholar
Planck Collaboration 2018, arXiv:1807.06209Google Scholar
Rieke, G. H., Alonso-Herrero, A., Weiner, B. J., et al. 2009, ApJ, 692, 556CrossRefGoogle Scholar
Shimizu, I., Inoue, A. K., Okamoto, T., & Yoshida, N. 2014, MNRAS, 440, 731CrossRefGoogle Scholar
Sunaga, K.et al. 2018, Proc. IAU Symp. No. 341, in this volumeGoogle Scholar
Tamura, Y., Mawatari, K., Hashimoto, T., Inoue, A. K., Zackrisson, E., Christensen, L., Binggeli, C., Matsuda, Y., et al. 2019, ApJ, 874, 27CrossRefGoogle Scholar