Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T20:05:50.898Z Has data issue: false hasContentIssue false

Detectability of Torus Topology

Published online by Cambridge University Press:  01 July 2015

Ophélia Fabre
Affiliation:
Institut d'Astrophysique de Paris, 98 bis boulevard Arago, 75014, Paris, France email: [email protected], [email protected], [email protected] Observatoire de Lyon, Université Claude Bernard, Lyon 1, CNRS-UMR 5574, Centre de Recherche Astrophysique de Lyon 9 avenue Charles André, Saint-Genis Laval, F-69230, France
Simon Prunet
Affiliation:
Institut d'Astrophysique de Paris, 98 bis boulevard Arago, 75014, Paris, France email: [email protected], [email protected], [email protected] UPMC Université Paris 06, UMR7095, 98 bis Boulevard Arago, F-75014, Paris, France
Jean-Philippe Uzan
Affiliation:
Institut d'Astrophysique de Paris, 98 bis boulevard Arago, 75014, Paris, France email: [email protected], [email protected], [email protected] UPMC Université Paris 06, UMR7095, 98 bis Boulevard Arago, F-75014, Paris, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The global shape, or topology, of the universe is not constrained by the equations of General Relativity, which only describe the local universe. As a consequence, the boundaries of space are not fixed and topologies different from the trivial infinite Euclidean space are possible. The cosmic microwave background (CMB) is the most efficient tool to study topology and test alternative models. Multi-connected topologies, such as the 3-torus, are of great interest because they are anisotropic and allow us to test a possible violation of isotropy in CMB data. We show that the correlation function of the coefficients of the expansion of the temperature and polarization anisotropies in spherical harmonics encodes a topological signature. This signature can be used to distinguish an infinite space from a multi-connected space on sizes larger than the diameter of the last scattering surface (DLSS). With the help of the Kullback-Leibler divergence, we set the size of the edge of the biggest distinguishable torus with CMB temperature fluctuations and E-modes of polarization to 1.15 DLSS. CMB temperature fluctuations allow us to detect universes bigger than the observable universe, whereas E-modes are efficient to detect universes smaller than the observable universe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Ben-David, A., Rathaus, B. & Itzhaki, N. 2012, JCAP 020 arXiv:1207.6218Google Scholar
BICEP2 collaboration 2014, arXiv:1403.3985Google Scholar
Bielewicz, P. & Banday, A. J. arXiv:1012.3549v1Google Scholar
Bielewicz, P., Górski, K. M., & Banday, A. J. 2004, MNRAS, 355, 1283Google Scholar
Bielewicz, P., Banday, A. J., & Górski, K. M. 2011, arXiv:1111.6046Google Scholar
Cornish, N. J., Spergel, D. N., & Starkman, G. D. 1998, Class. Quant. Grav., 15, 2657CrossRefGoogle Scholar
Cornish, N., Spergel, D., Starkman, G., & Komatsu, E. 2004, Phys. Rev. Lett., 92, 201302Google Scholar
Fabre, O., Prunet, P., & Uzan, J.-P. 2013, arXiv:1311.3509Google Scholar
Gorski, K. M.et al. 2005, ApJ 622 759http://healpix.jpl.nasa.gov/Google Scholar
Hu, W. & White, M. 1997, Phys. Rev. D, 56, 596Google Scholar
Key, J. S., Cornish, N., Spergel, D., & Starkman, G. 2007, Phys. Rev. D, 75, 084034Google Scholar
Kullback, S. 1959, Information theory and statistics, Wiley Publications in StatisticsGoogle Scholar
Kunz, M., Aghanim, N., Riazuelo, A., & Forni, O. 2008, Phys. Rev. D, 77, 023525CrossRefGoogle Scholar
Lachieze-Rey, M. & Luminet, J.-P. 1995, Phys. Rep. 254 135, arXiv:gr-qc/9605010Google Scholar
Levin, J. J. 2002, Phys. Rep. 365 251, arXiv:gr-qc/0108043Google Scholar
Planck results XXII 2013, arXiv:1303.5082Google Scholar
Planck results XXVI 2013, arXiv:1303.5086Google Scholar
Riazuelo, A., Uzan, J.-P., Lehoucq, R., & Weeks, J. 2004, Phys. Rev. D, 69, 103514CrossRefGoogle Scholar
Riazuelo, A.et al. 2004, Phys. Rev. D, 69, 103518Google Scholar
Riazuelo, A., Caillerie, S., Lachieze-Rey, M., Lehoucq, R., & Luminet, J.-P. 2006, arXiv:astro-ph/0601433Google Scholar
Trotta, R. 2008, Contemp. Phys., 49, 71CrossRefGoogle Scholar