Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T01:44:05.892Z Has data issue: false hasContentIssue false

A detailed dust energy balance study of the Sombrero galaxy

Published online by Cambridge University Press:  17 August 2012

Ilse De Looze
Affiliation:
Universiteit Gent, Sterrenkundig Observatorium Krijgslaan 281, S9, 9000 Gent email: [email protected]
Maarten Baes
Affiliation:
Universiteit Gent, Sterrenkundig Observatorium Krijgslaan 281, S9, 9000 Gent email: [email protected]
Jacopo Fritz
Affiliation:
Universiteit Gent, Sterrenkundig Observatorium Krijgslaan 281, S9, 9000 Gent email: [email protected]
Gianfranco Gentile
Affiliation:
Universiteit Gent, Sterrenkundig Observatorium Krijgslaan 281, S9, 9000 Gent email: [email protected]
Joris Verstappen
Affiliation:
Universiteit Gent, Sterrenkundig Observatorium Krijgslaan 281, S9, 9000 Gent email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Sombrero galaxy (M104) is an interesting object for a dust energy balance study due to its very symmetric dust lane, its proximity and its (nearly edge-on) inclination of 84°. From a panchromatic radiative transfer analysis, including scattering, absorption and thermal dust re-emission, we construct a standard model for M104 accounting for observations in the optical wave bands (stellar SED, images and extinction profiles in the V and RC band). This standard model underestimates the observed dust emission at infrared wavelengths by a factor of ~ 3, similar to the discrepancy found in other energy balance studies of edge-on spirals. Supplementing this standard model with a young stellar component of low star formation activity in both the inner disk (SFR ~ 0.21 M yr−1) and dust ring (SFR ~ 0.05 M yr−1), we are capable of solving the discrepancy in the dust energy budget of the Sombrero galaxy at wavelengths shortwards of 100 μm. To account for the remaining discrepancy at longer wavelengths, we propose a secondary dust component distributed in quiescent clumps. This model with a clumpy dust structure predicts three-quarters of the total dust content to reside in compact dust clouds with no associated embedded sources.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Alton, P. B., Xilouris, E. M., Misiriotis, A., Dasyra, K. M., & Dumke, M. 2004, A&A, 425, 109Google Scholar
Baes, M., et al. 2010, MNRAS, 343, 1081CrossRefGoogle Scholar
Baes, M., et al. 2010, A&A, 518, L39.Google Scholar
Baes, M., Verstappen, J., De Looze, I. et al. 2011, ApJS, 196, 22Google Scholar
Bendo, G. et al. 2006, AJ, 645, 134Google Scholar
Bianchi, S. 2008, A&A, 490, 461Google Scholar
Christian, C. A., Bond, H. E., & Frattare, L. M. et al. 2003, Bulletin of the AAS, Vol. 35, p. 1398Google Scholar
Dale, D. A. et al. 2007, AJ, 655, 863CrossRefGoogle Scholar
Dasyra, K. M., Xilouris, E. M., Misiriotis, A. et al. 2005, in AIP Conf. Proc., Vol. 761, pp. 197202Google Scholar
Emsellem, E. 1995, A&A, 303, 673Google Scholar
Kennicutt, R. C., et al. 2003, PASP, 115, 928Google Scholar
Kennicutt, R. C., et al. 2009, ApJ, 703, 1672Google Scholar
Leitherer, C., et al. 1999, ApJS, 123, 3Google Scholar
Maraston, C. 2005, MNRAS, 362, 799CrossRefGoogle Scholar
Misiriotis, A., Popescu, C. C., Tuffs, R., & Kylafis, N. D. 2001, A&A, 372, 775Google Scholar
Popescu, C. C., Misiriotis, A., Kylafis, N. D., Tuffs, R. J., & Fischera, J. 2000, A&A, 362, 138Google Scholar
Popescu, C. C. & Tuffs, R. J. 2002, MNRAS, 335, L41.Google Scholar
Popescu, C. C., Tuffs, R. J., Dopita, M. A. et al. 2011, A&A, 527, A109.Google Scholar
Rice, W., Lonsdale, C. J., Soifer, B. T. et al. 1988, ApJS, 68, 91CrossRefGoogle Scholar
Vazdekis, A., Peletier, R. F., Beckman, J. E., & Casuso, E. 1997, AJ, 111, 203Google Scholar
Vlahakis, C., Baes, M., Bendo, G., & Lundgren, A. 2008 A&A, 485, L25.Google Scholar