Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-24T02:36:28.529Z Has data issue: false hasContentIssue false

Delta-slow solution to explain B supergiant stars' winds

Published online by Cambridge University Press:  23 January 2015

M. Haucke
Affiliation:
Facultad de Ciencias Astronómicas y Geofísicas, UNLP, Argentina. email: [email protected]
I. Araya
Affiliation:
Instituto de Física y Astronomía, UV, Chile.
C. Arcos
Affiliation:
Instituto de Física y Astronomía, UV, Chile.
M. Curé
Affiliation:
Instituto de Física y Astronomía, UV, Chile.
L. Cidale
Affiliation:
Facultad de Ciencias Astronómicas y Geofísicas, UNLP, Argentina. email: [email protected]
S. Kanaan
Affiliation:
Instituto de Física y Astronomía, UV, Chile.
R. Venero
Affiliation:
Facultad de Ciencias Astronómicas y Geofísicas, UNLP, Argentina. email: [email protected]
M. Kraus
Affiliation:
Astronomický ústav, Akademie věd České Republiky, Ondřejov, Czech Republic
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new radiation-driven wind solution called δ-slow was found by Curé et al. (2011) and it predicts a mass-loss rate and terminal velocity slower than the fast solution (m-CAK, Pauldrach et al. 1986). In this work, we present our first synthetic spectra based on the δ-slow solution for the wind of B supergiant (BSG) stars. We use the output of our hydrodynamical code HYDWIND as input in the radiative transport code FASTWIND (Puls et al. 2005). In order to obtain stellar and wind parameters, we try to reproduce the observed Hα, Hβ, Hγ, Hδ, Hei 4471, Hei 6678 and Heii 4686 lines. The synthetic profiles obtained with the new hydrodynamical solutions are in good agreement with the observations and could give us clues about the parameters involved in the radiation force.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Curé, M. 2004, ApJ 614, 929CrossRefGoogle Scholar
Curé, M., Cidale, L., & Granada, A. 2011, ApJ 737, 18Google Scholar
Fraser, M., Dufton, P. L., Hunter, I., & Ryans, R. S. I. 2010, MNRAS 404, 1306Google Scholar
Howarth, I. D., Siebert, K. W., Hussain, G. A. J., & Prinja, R. K. 1997, MNRAS 284, 265Google Scholar
Markova, N., Prinja, R. K., Markov, H., et al. 2008, A&A 487, 211Google Scholar
Morel, T., Marchenko, S. V., Pati, A. K., et al. 2004, MNRAS 351, 552Google Scholar
Pauldrach, A., Puls, J., & Kudritzki, R. P. 1986, A&A 164, 86Google Scholar
Puls, J., Springmann, U., & Lennon, M. 2000, A&AS 141, 23Google Scholar
Puls, J., Urbaneja, M. A., Venero, R., et al. 2005, A&A 435, 669Google Scholar