Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T23:34:26.722Z Has data issue: false hasContentIssue false

The debris disk – terrestrial planet connection

Published online by Cambridge University Press:  10 November 2011

Sean N. Raymond
Affiliation:
Université de Bordeaux, Observatoire Aquitain des Sciences de l'Univers, 2 rue de l'Observatoire, BP 89, F-33271 Floirac Cedex, France email: [email protected] CNRS, UMR 5804, Laboratoire d'Astrophysique de Bordeaux, 2 rue de l'Observatoire, BP 89, F-33271 Floirac Cedex, France
Philip J. Armitage
Affiliation:
JILA, University of Colorado, Boulder CO 80309, USA Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder CO 80309, USA
Amaya Moro-Martín
Affiliation:
Departamento de Astrofisica, CAB (CSIC-INTA), Instituto Nacional de Tecnica Aeroespacial, Torrejon de Ardoz, 28850, Madrid, Spain Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544, USA
Mark Booth
Affiliation:
Institute of Astronomy, Cambridge University, Madingley Road, Cambridge, UK
Mark C. Wyatt
Affiliation:
Institute of Astronomy, Cambridge University, Madingley Road, Cambridge, UK
John C. Armstrong
Affiliation:
Department of Physics, Weber State University, Ogden, UT, USA
Avi M. Mandell
Affiliation:
NASA Goddard Space Flight Center, Code 693, Greenbelt, MD 20771, USA
Franck Selsis
Affiliation:
Université de Bordeaux, Observatoire Aquitain des Sciences de l'Univers, 2 rue de l'Observatoire, BP 89, F-33271 Floirac Cedex, France email: [email protected] CNRS, UMR 5804, Laboratoire d'Astrophysique de Bordeaux, 2 rue de l'Observatoire, BP 89, F-33271 Floirac Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The eccentric orbits of the known extrasolar giant planets provide evidence that most planet-forming environments undergo violent dynamical instabilities. Here, we numerically simulate the impact of giant planet instabilities on planetary systems as a whole. We find that populations of inner rocky and outer icy bodies are both shaped by the giant planet dynamics and are naturally correlated. Strong instabilities – those with very eccentric surviving giant planets – completely clear out their inner and outer regions. In contrast, systems with stable or low-mass giant planets form terrestrial planets in their inner regions and outer icy bodies produce dust that is observable as debris disks at mid-infrared wavelengths. Fifteen to twenty percent of old stars are observed to have bright debris disks (at λ ~ 70μm) and we predict that these signpost dynamically calm environments that should contain terrestrial planets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Adams, F. C. & Laughlin, G. 2003, Icarus, 163, 290CrossRefGoogle Scholar
Booth, M., Wyatt, M. C., Morbidelli, A., Moro-Martín, A., & Levison, H. F. 2009, MNRAS, 399, 385CrossRefGoogle Scholar
Butler, R. P., et al. 2006, ApJ, 646, 505CrossRefGoogle Scholar
Carpenter, J. M., et al. 2009, ApJS, 181, 197CrossRefGoogle Scholar
Chambers, J. E. 1999, MNRAS, 304, 793CrossRefGoogle Scholar
Chambers, J. E., Wetherill, G. W., & Boss, A. P. 1996, Icarus, 119, 261CrossRefGoogle Scholar
Chambers, J. E. 2004, Earth and Planetary Science Letters, 223, 241CrossRefGoogle Scholar
Chatterjee, S., Ford, E. B., Matsumura, S., & Rasio, F. A. 2008, ApJ, 686, 580CrossRefGoogle Scholar
Dohnanyi, J. S. 1969, JGR, 74, 2531CrossRefGoogle Scholar
Fogg, M. J. & Nelson, R. P. 2007, A&A, 461, 1195Google Scholar
Haisch, K. E. Jr., Lada, E. A., & Lada, C. J. 2001, ApJL, 553, L153CrossRefGoogle Scholar
Howard, A. W., et al. 2010, Science, 330, 653CrossRefGoogle Scholar
Iwasaki, K., Tanaka, H., Nakazawa, K., & Hiroyuki, E. 2001, PASJ, 53, 321CrossRefGoogle Scholar
Jurić, M. & Tremaine, S. 2008, ApJ, 686, 603CrossRefGoogle Scholar
Kenyon, S. J. & Bromley, B. C. 2006, AJ, 131, 1837CrossRefGoogle Scholar
Kenyon, S. J. & Luu, J. X. 1998, AJ, 115, 2136CrossRefGoogle Scholar
Mandell, A. M., Raymond, S. N., & Sigurdsson, S. 2007, ApJ, 660, 823CrossRefGoogle Scholar
Marzari, F. & Weidenschilling, S. J. 2002, Icarus, 156, 570CrossRefGoogle Scholar
Mayor, M., et al. 2009, A&A, 507, 487Google Scholar
Morbidelli, A., Brasser, R., Gomes, R., Levison, H. F., & Tsiganis, K. 2010, AJ, 140, 1391CrossRefGoogle Scholar
Moro-Martín, A., et al. 2007, ApJ, 658, 1312CrossRefGoogle Scholar
Moro-Martín, A., Malhotra, R., Bryden, G., Rieke, G. H., Su, K. Y. L., Beichman, C. A., & Lawler, S. M. 2010, ApJ, 717, 1123CrossRefGoogle Scholar
Rasio, F. A. & Ford, E. B. 1996, Science, 274, 954CrossRefGoogle Scholar
Raymond, S. N., Armitage, P. J., & Gorelick, N. 2010, ApJ, 711, 772CrossRefGoogle Scholar
Raymond, S. N., Mandell, A. M., & Sigurdsson, S. 2006, Science, 313, 1413CrossRefGoogle Scholar
Raymond, S. N., O'Brien, D. P., Morbidelli, A., & Kaib, N. A. 2009, Icarus, 203, 644CrossRefGoogle Scholar
Raymond, S. N., Quinn, T., & Lunine, J. I. 2004, Icarus, 168, 1CrossRefGoogle Scholar
Spiegel, D. S., Raymond, S. N., Dressing, C. D., Scharf, C. A., & Mitchell, J. L. 2010, ApJ, 721, 1308CrossRefGoogle Scholar
Trilling, D. E., et al. 2008, ApJ, 674, 1086CrossRefGoogle Scholar
Veras, D. & Armitage, P. J. 2006, ApJ, 645, 1509CrossRefGoogle Scholar
Weidenschilling, S. J. & Marzari, F. 1996, Nature, 384, 619CrossRefGoogle Scholar
Wyatt, M. C. 2008, ARA&A, 46, 339Google Scholar
Zakamska, N. L., Pan, M., & Ford, E. B. 2011, MNRAS, 410, 1895Google Scholar