Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T04:43:54.628Z Has data issue: false hasContentIssue false

The damping of transverse oscillations of prominence threads: a comparative study

Published online by Cambridge University Press:  06 January 2014

Roberto Soler
Affiliation:
Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain email: [email protected]
Ramon Oliver
Affiliation:
Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain email: [email protected]
Jose Luis Ballester
Affiliation:
Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Transverse oscillations of thin threads in solar prominences are frequently reported in high-resolution observations. The typical periods of the oscillations are in the range of 3 to 20 min. A peculiar feature of the oscillations is that they are damped in time, with short damping times corresponding to few periods. Theoretically, the oscillations are interpreted as kink magnetohydrodynamic waves. However, the mechanism responsible for the damping is not well known. Here we perform a comparative study between different physical mechanisms that may damp kink waves in prominence threads. The considered processes are thermal conduction, cooling by radiation, resonant absorption, and ion-neutral collisions. We find that thermal conduction and radiative cooling are very inefficient for the damping of kink waves. The effect of ion-neutral collisions is minor for waves with periods usually observed. Resonant absorption is the only process that produces an efficient damping. The damping times theoretically predicted by resonant absorption are compatible with those reported in the observations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Arregui, I., Terradas, J., Oliver, R., & Ballester, J. L. 2008, ApJL, 682, L141Google Scholar
Arregui, I., Oliver, R., & Ballester, J. L. 2012, Living Rev. Sol. Phys., 9, 2CrossRefGoogle Scholar
Ballai, I. 2003, A&A, 410, L17Google Scholar
Díaz, A. J., Oliver, R., & Ballester, J. L. 2002, ApJ, 580, 550Google Scholar
Engvold, O. 2008, Waves & Oscillations in the Solar Atmosphere: Heating and Magneto-Seismology, Proceedings of the International Astronomical Union, IAU Symposium, 247, 152Google Scholar
Goossens, M., Andries, J., & Aschwanden, M. J. 2002, A&A, 394, L39Google Scholar
Lin, Y., Engvold, O., Rouppe van der Voort, L., Wiik, J. E., & Berger, T. E. 2005, Sol. Phys., 226, 239CrossRefGoogle Scholar
Lin, Y., Engvold, O., Rouppe van der Voort, L., & van Noort, M. 2007, Sol. Phys., 246, 65Google Scholar
Lin, Y., Soler, R., Engvold, O., et al. 2009, ApJ, 704, 870Google Scholar
Ning, Z., Cao, W., Okamoto, T. J., Ichimoto, K., & Qu, Z. Q. 2009, A&A, 499, 595Google Scholar
Okamoto, T. J., Tsuneta, S., Berger, T. E., et al. 2007, Science, 318, 1577Google Scholar
Oliver, R. & Ballester, J. L. 2002, Sol. Phys., 206, 45Google Scholar
Oliver, R. 2009, SSR, 149, 175Google Scholar
Ruderman, M. S. & Roberts, B. 2002, ApJ, 577, 475CrossRefGoogle Scholar
Sewell, G. 2005, The Numerical Solution of Ordinary and Partial Differential Equations, Pure and Applied Mathematics Series (New York: Wiley)CrossRefGoogle Scholar
Soler, R., Arregui, I., Oliver, R., & Ballester, J. L. 2010, ApJ, 722, 1778Google Scholar
Soler, R. 2010, PhD thesis, Universitat de les Illes Balears, available at http://www.uib.es/depart/dfs/Solar/thesis_roberto_soler.pdfGoogle Scholar
Terradas, J., Arregui, I., Oliver, R., & Ballester, J. L. 2008, ApJL, 678, L153Google Scholar