Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T04:37:15.871Z Has data issue: false hasContentIssue false

Damping and the period ratio P1/2P2 of non-adiabatic slow mode

Published online by Cambridge University Press:  26 August 2011

N. Kumar
Affiliation:
Department of Mathematics, M.M.H. College, Ghaziabad 201009, Uttar Pradesh, India
A. Kumar
Affiliation:
Department of Mathematics, Vishveshwarya Institute of Engineering and Technology, Dadri, G. B. Nagar 203207, Uttar Pradesh, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the combined effects of thermal conduction, compressive viscosity and optically thin radiative losses on the period ratio, P1/2P2, (P1 is the period of the fundamental mode and P2 is the period of its first harmonic) of a slow mode propagating one dimensionally. We obtain the dispersion relation and solve it to study the influence of non-ideal effects on the period ratio. The dependence of period ratio on thermal conductivity, compressive viscosity and radiative losses has been shown graphically. It is found that the effect of thermal conduction on the period ratio is negligible while compressive viscosity and radiation have sufficient effects for small loops and large loops respectively.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Andries, J., Goossens, M., Hollweg, J. V., Arregui, I., & Van Doorselaere, T. 2005a, A &A, 430, 1109Google Scholar
Andries, J., Arregui, I., & Goossens, M. 2005b, ApJ, 624, L57CrossRefGoogle Scholar
Carbonell, M., Oliver, R., & Ballester, J. L. 2004, A&A, 415, 739Google Scholar
De Moortel, I., Ireland, J., Hood, A. W., & Walsh, R. W. 2002a, A&A, 387, L13Google Scholar
De Moortel, I., Ireland, J., Walsh, R. W., & Hood, A. W. 2002b, Solar Phys., 209, 61CrossRefGoogle Scholar
De Moortel, I., & Hood, A. W. 2004, A&A, 415, 705Google Scholar
DeForest, C. E. & Gurman, J. B. 1998, ApJ, 501, L217CrossRefGoogle Scholar
Hildner, E. 1974 Solar Phys., 35, 123CrossRefGoogle Scholar
Kliem, V., Dammasch, I. E., Curdt, W., & Wilhelm, K. 2002 ApJ, 568, L61CrossRefGoogle Scholar
Macnamara, C. K. & Roberts, B. 2010, A&A, 515, 41Google Scholar
McEwan, M. P. & De Moortel, I. 2006, A&A, 448, 763Google Scholar
McEwan, M. P., Donnellly, G. R., Diaz, A. J., & Roberts, B. 2006, A&A, 460, 893Google Scholar
McEwan, M. P., Diaz, A. J., & Roberts, B. 2008, A&A, 481, 819Google Scholar
Ofman, L., Romoli, M., Poletto, G., Noci, G., & Kohl, J. L. 1997, ApJ, 491, L111CrossRefGoogle Scholar
Ofman, L., Nakariakov, V. M., & DeForest, C. E. 1999, ApJ, 514, 441CrossRefGoogle Scholar
Ofman, L., Wang, T. 2002, ApJ, 580, L85CrossRefGoogle Scholar
Robbrecht, E., Verwichte, E., Berghmans, D. et al. 2001, A&A, 370, 591Google Scholar
Spitzer, L. 1962, Physics of Fully Ionized Gases (New York: Wiley Interscience 2nd edn.)Google Scholar
Srivastava, A. K. & Dwivedi, B. N. 2010, New Astron., 15, 8CrossRefGoogle Scholar
Van Doorsselaere, T., Nakariakov, V. M., & Verwichte, E. 2007, A&A, 473, 959Google Scholar
Verwichte, E., Nakariakov, V. M., Ofman, L., & Deluca, E. E. 2004, Solar Phys., 223, 77CrossRefGoogle Scholar
Wang, T. J., Solanki, S. K., Innes, D. E., Curdt, W., & Marsch, E. 2003, A&A, 402, L17Google Scholar
Wang, T. J. & Solanki, S.K. 2004, A&A, 421, L33Google Scholar