Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T20:50:43.475Z Has data issue: false hasContentIssue false

Cycle times of early M dwarf stars: mean field models versus observations

Published online by Cambridge University Press:  24 September 2020

Manfred Küker
Affiliation:
Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany emails: mailto:[email protected], mailto:[email protected], mailto:[email protected]
Günther Rüdiger
Affiliation:
Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany emails: mailto:[email protected], mailto:[email protected], mailto:[email protected]
Katalin Oláh
Affiliation:
Konkoly Observatory, Budapest Hungary email: mailto:[email protected]
Klaus G. Strassmeier
Affiliation:
Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany emails: mailto:[email protected], mailto:[email protected], mailto:[email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations of early-type M stars suggest that there are two characteristic cycle times, one of order one year for fast rotators (Prot < 1 day) and another of order four years for slower rotators. For a sample of fast-rotating stars, the equator-to-pole differences of the rotation rates up to 0.03 rad d−1 are also known from Kepler data. These findings are well-reproduced by mean field models. These models predict amplitudes of the meridional flow, from which the travel time from pole to equator at the base of the convection zone of early-type M stars can be calculated. As these travel times always exceed the observed cycle times, our findings do not support the flux transport dynamo.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bonanno, A., Elstner, D., Rüdiger, G., & Belvedere, G. 2002, A&A, 390, 673Google Scholar
Choudhuri, A. R., Schüssler, M., & Dikpati, M. 1995, A&A, 303, L29Google Scholar
Dikpati, M. & Charbonneau, P. 1999, ApJ, 518, 508CrossRefGoogle Scholar
Distefano, E., Lanzafame, A. C., Lanza, A. F., Messina, S., & Spada, F. 2016, A&A, 591, A43Google Scholar
Küker, M., Rüdiger, G., & Kitchatinov, L. L. 2011, A&A, 530, A48Google Scholar
Küker, M., Rüdiger, G., Olah, K., & Strassmeier, K. G. 2019, A&A, 622, A40Google Scholar
Küker, M., Rüdiger, G., & Schultz, M. 2001, A&A, 374, 301Google Scholar
Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJ, 192, 3Google Scholar
Roberts, P. H. 1972, Philosophical Transactions of the Royal Society of London Series A, 272, 663Google Scholar
Suárez Mascareño, A., Rebolo, R., & González Hernández, J. I. 2016, A&A, 595, A12Google Scholar
Vida, K., Kriskovics, L., & Oláh, K. 2013, Astronomische Nachrichten, 334, 972CrossRefGoogle Scholar
Vida, K., Oláh, K., & Szabó, R. 2014, MNRAS, 441, 2744CrossRefGoogle Scholar
Wargelin, B. J., Saar, S. H., Pojmański, G., Drake, J. J., & Kashyap, V. L. 2017, MNRAS, 464, 3281CrossRefGoogle Scholar