Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T07:06:15.081Z Has data issue: false hasContentIssue false

Current Status of GRAPE Project

Published online by Cambridge University Press:  01 September 2007

J. Makino*
Affiliation:
Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I'll summarize the current status of GRAPE project. GRAPE-6, completed in 2002, has been used by a number of people, for a wide variety of problems such as planet formation, star cluster dynamics, galactic nuclei, and cosmology. In 2004, we started the development of the next-generation machine, GRAPE-DR. GRAPE-DR has a architecture radically different from that of previous GRAPEs. It does not have hardwired pipeline for gravitational force calculation but a large number of small and simple programmable processors. This change made it possible to apply GRAPE-DR to a wide range of problems to which GRAPE was not efficient, and at the same time it helps us to explore new algorithms for N-body simulations. The GRAPE-DR chip was completed in 2006, and second prototype board was completed in May 2007. We hope to have full production-level board commercially available by the end of year 2007. A single board will offer the theoretical peak speed of 2 Tflops, about 20 times as that of a single PCI card version of GRAPE-6.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bakker, A. F. & Bruin, C., 1988, in: Alder, B. J. (ed.), Special Purpose Computers, (San Diego: Academic Press), p. 183CrossRefGoogle Scholar
Fine, R., Dimmler, G., & Levinthal, C. 1991 PROTEINS: Structure, Function, and Genetics, 11, 242CrossRefGoogle Scholar
Fukushige, T., Ito, T., Makino, J., Ebisuzaki, T., Sugimoto, D., & Umemura, M. 1991, PASJ, 43, 841Google Scholar
Fukushige, T., Makino, J., & Kawai, A. 2005 PASJ, 57, 1009CrossRefGoogle Scholar
Fukushige, T., Taiji, M., Makino, J., Ebisuzaki, T., & Sugimoto, D. 1996 ApJ, 468, 51CrossRefGoogle Scholar
Hamada, T., Fukushige, T., & Makino, J. 2005 PASJ, 57, 799CrossRefGoogle Scholar
Ito, T., Makino, J., Ebisuzaki, T., & Sugimoto, D. 1990 Computer Physics Communications, 60, 187CrossRefGoogle Scholar
Ito, T., Fukushige, T., Makino, J., Ebisuzaki, T., Okumura, S. K., Sugimoto, D., Miyagawa, H., & Kitamura, K. 1994 PROTEINS: Structure, Function, and Genetics, 20, 139CrossRefGoogle Scholar
Kawai, A., Fukushige, T., Makino, J., & Taiji, M. 2000 PASJ, 52, 659CrossRefGoogle Scholar
Makino, J.PASJ, 43, 621Google Scholar
Makino, J., Fukushige, T., Koga, M., & Namura, K. 2003 PASJ, 1991, 55, 1163CrossRefGoogle Scholar
Makino, J., Fukushige, T.K.Okumura, S., & Ebisuzaki, T. 1993 PASJ, 45, 303Google Scholar
Makino, J., Taiji, M., Ebisuzaki, T., & Sugimoto, D. 1997 ApJ, 480, 432CrossRefGoogle Scholar
Narumi, T., Susukita, R., Ebisuzaki, T., McNiven, G., & Elmegreen, B. 1999 Molecular Simulation, 21, 401CrossRefGoogle Scholar
Narumi, T., Ohno, Y., Okimoto, N., Koishi, T., Suenaga, A., Futatsugi, N., Yanai, R., Himeno, R., Fujikawa, S., Taiji, M., & Ikei, M. 2006 in: Proceedings of SC06, (ACM Press), CD-ROMGoogle Scholar
Okumura, S. K., Makino, J., Ebisuzaki, T., Fukushige, T., Ito, T., Sugimoto, D., Hashimoto, E., Tomida, K., & Miyakawa, N. 1993 PASJ, 45. 329Google Scholar
Steinmetz, M.MNRAS, 278, 1005CrossRefGoogle Scholar
Umemura, M., Fukushige, T., Makino, J., Ebisuzaki, T., Sugimoto, D., Turner, E. L., & Loeb, A. 1993 PASJ, 45, 311Google Scholar