Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T15:14:27.354Z Has data issue: false hasContentIssue false

Current instabilities in the pulsar magnetosphere

Published online by Cambridge University Press:  08 June 2011

Axel Jessner
Affiliation:
Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, D-53121, Bonn, Germany email: [email protected]
Harald Lesch
Affiliation:
Universitäts-Sternwarte München, Scheinerstr. 1, D-81679 Müunchen, Germany email: [email protected]
Michael Kramer
Affiliation:
Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, D-53121, Bonn, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Pulsars are rotating neutron stars with strong magnetic dipole fields (B = 104 − 109T), and high induced surface potentials (ca. 1014V). A strong charged particle current is driven out of the polar cap. It returns along an equatorial current sheet. The total dissipated power of the current system is a significant fraction of the observed spin-down power of the pulsar. The Pierce instability occurs when particles are constrained to move in only one dimension and the field from the accumulated space charge exceeds the accelerating background field. Relativistic particle motion enhances the instability which forms narrow regions (cm) of high particle densities and low velocities separated by much longer but more tenuous relativistic flows. The calculated spectrum, power budget and time scales of the magnetospheric Pierce instabilities match the observed radio properties of pulsars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Beloborodov, A. M. 2008, ApJ, 683, L4144CrossRefGoogle Scholar
Davidson, , 2001, Physics of non-neutral beams, Imperial College Press London 2001Google Scholar
Komissarov, S. S. 2006, MNRAS, 367, 19CrossRefGoogle Scholar
Kramer, M., Lyne, A. G., O'Brien, J. T., Jordan, C. A., & Lorimer, D. R. 2006, Science, 312, 549Google Scholar
Contopoulos, I., Kazanas, D. & Fendt, C. 1999, ApJ, 511, 351Google Scholar
Jessner, A., Lesch, H. & Kunzl, T. 2001, ApJ, 547, 959CrossRefGoogle Scholar
Jessner, A., Lesch, H. & Kunzl, T. 2002, 270. WE-Heraeus Seminar on Neutron Stars, Pulsars and Supernova Remnants. (Eds.) Becker, W. et al. . MPE-Report No. 278, 209-214Google Scholar
Jessner, A., Popov, M. V., Kondratiev, V. I., Kovalev, Y. Y., Graham, D., Zensus, A., Soglasnov, V. A., Bilous, A. V., & Moshkina, O. A. 2010, A& in pressGoogle Scholar
Loehmer, O., Jessner, A., Kramer, M., Wielebinski, R. & Maron, O. 2008, A&A, 480, 623Google Scholar
Mestel, L., Robertson, J. A., Wang, Y. M. & Westfold, K. C. 1985, MNRAS, 217, 443CrossRefGoogle Scholar
Pierce, J. R. 1949, The Theory and Design of Electron Beams, van Nostrand, (Toronto, New York, London 1949)Google Scholar