Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-06T03:48:12.505Z Has data issue: false hasContentIssue false

Current and Future of Microlensing Exoplanet Search

Published online by Cambridge University Press:  29 April 2014

Takahiro Sumi*
Affiliation:
Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Gravitational microlensing has a unique sensitivity to exoplanets at outside of the snow-line with masses down to the Earth-mass. Because of the rarity and short timescale of the planetary signal, the survey groups, MOA-II in New Zealand and OGLE-IV in Chile carry out the wide field survey observation towards the galactic bulge to issue alerts in real time. Then telescopes of the follow-up groups conduct high cadence follow-up observation to get dense sampling of the short planetary signal. Recent high cadence survey observations by MOA-II and OGLE-IV have started to find exoplanets without follow-up observation systematically. This is a transition to the next generation 24-hour high cadence survey network which can reveal the mass function of exoplanets down to Earth-mass outside of the snow-line. The Wide Field Infrared Survey Telescope (WFIRST) is the highest ranked recommendation for a large space mission in the recent New Worlds, New Horizons (NWNH) in Astronomy and Astrophysics 2010 Decadal Survey. Exoplanet microlensing program is one of the primary science of WFIRST. WFIRST will find about 2,000 bound planets and 1,000 unbound planets by the high precision continuous survey with 15 min. cadence. WFIRST can complete the statistical census of planetary systems in the Galaxy, from the outer habitable zone to gravitationally unbound planets – a discovery space inaccessible to other exoplanet detection techniques.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Afonso, C., et al. 2003, A&A, 404, 145Google Scholar
Alcock, C., et al. 1993, Nature, 365, 621CrossRefGoogle Scholar
Alcock, C., et al. 1997, ApJ, 486, 697CrossRefGoogle Scholar
Alcock, C., et al., 2000b, ApJ, 541, 734CrossRefGoogle Scholar
Bachelet, E., et al. 2012, ApJ, 754, 73CrossRefGoogle Scholar
Beaulieu, J.-P., et al. 2006, Nature, 439, 437CrossRefGoogle Scholar
Bennett, D. P. & Rhie, S. H. 1996, ApJ, 472, 660CrossRefGoogle Scholar
Bennett, D. P. & Rhie, S. H. 2002, ApJ, 574, 985CrossRefGoogle Scholar
Bennett, D. P., et al. 2008, ApJ, 684, 663CrossRefGoogle Scholar
Bennett, D. P., et al. 2010, ApJ, 713, 837Google Scholar
Bennett, D. P., et al. 2012, ApJ, 757, 119CrossRefGoogle Scholar
Bennett, D P., Anderson, J., & Gaudi, B. 2007, ApJ, 660, 781CrossRefGoogle Scholar
Bond, I. A., et al. 2001, MNRAS, 327, 868CrossRefGoogle Scholar
Bond, I. A., et al. 2004, ApJ, 606, L155Google Scholar
Boss, A. P. 2006, ApJL, 644, L79CrossRefGoogle Scholar
Cassan, A., et al., 2012, Nature, 481, 167CrossRefGoogle Scholar
Cumming, A., Butler, R. P., Marcy, G. W., Vogt, S. S., Wright, J. T., & Fischer, D. A. 2008, PASP, 120, 531CrossRefGoogle Scholar
Dong, S., et al. 2009a, ApJ, 695, 970CrossRefGoogle Scholar
Dong, S., et al. 2009b, ApJ, 698, 1826CrossRefGoogle Scholar
Gaudi, B. S. 2012, Annual Review of Astronomy and Astrophysics, 50, 411Google Scholar
Gaudi, B. S., et al. 2008, Science, 319, 927CrossRefGoogle Scholar
Gaudi, B. S., 2010, in Exoplanets, ed. Seager, S. (Tucson, AZ: Univ. Arizona Press), 79Google Scholar
Gould, A., et al. 2006, ApJ, 644, L37CrossRefGoogle Scholar
Gould, A., et al. 2010, ApJL, 720, 1073CrossRefGoogle Scholar
Green, J., et al. 2012, eprint arXiv:1208.4012Google Scholar
Griest, K., et al. 1991, ApJ, 372, L79Google Scholar
Ida, S. & Lin, D. N. C. 2004, ApJ, 616, 567Google Scholar
Janczak, J., et al. 2010, 711, 731Google Scholar
Kennedy, G. M. & Kenyon, S. J. 2008, ApJ, 673, 502Google Scholar
Kennedy, G. M., Kenyon, S. J., & Bromley, B. C. 2006, ApJ, 650, L139CrossRefGoogle Scholar
Konacki, M., et al. 2005, ApJ, 624, 372CrossRefGoogle Scholar
Lagrange, A. M., et al. 2009, A&A, 493, L21Google Scholar
Laughlin, G., Bodenheimer, P., & Adams, F. C. 2004, ApJ, 612, L73CrossRefGoogle Scholar
Liebes, S. 1964, Phys. Rev., 133, 835Google Scholar
Mao, S. & Paczyński, B. 1991, ApJ, 374, L37Google Scholar
Marcy, G. W., et al. 2005, ApJ, 619, 570Google Scholar
Marois, C., et al. 2008, Science, 322, 1348CrossRefGoogle Scholar
Mayor, M. & Queloz, D. 1995, Nature, 378, 355CrossRefGoogle Scholar
Mayor, M., et al. 2004, A&A, 415, 391Google Scholar
Mayor, M., et al. 2009, A&A, 493, 639Google Scholar
Muraki, Y., et al. 2011, ApJ, 741, 22Google Scholar
Paczyński, B. 1986, ApJ, 304, 1Google Scholar
Paczyński, B. 1991, ApJ, 371, L63CrossRefGoogle Scholar
Pravdo, S. H. & Shaklan, S. B., 2009, ApJ, 700, 623Google Scholar
Smith, M. C., Mao, S., & Woźniak, P. R. 2002, MNRAS, 332, 962CrossRefGoogle Scholar
Sumi, T., et al., 2003, ApJ, 591, 204Google Scholar
Sumi, T., et al., 2010, ApJ, 710, 1641CrossRefGoogle Scholar
Sumi, T., et al., 2011, Nature, 473, 349Google Scholar
Shvartzvald, Y. & Maoz, D. 2012, MNRAS, 419, 3631Google Scholar
Thommes, E. W., Matsumura, S., & Rasio, F. A. 2008, Science, 321, 814CrossRefGoogle Scholar
Udalski, A., et al. 1994, Acta Astronomica, 44, 165Google Scholar
Udalski, A., Zebruń, K., Szymański, M., Kubiak, M., Pietrzyński, G., Soszyński, I., & Woźniak, P. R. 2000, Acta Astronomica, 50, 1Google Scholar
Udalski, A. 2003, Acta Astron., 53, 291Google Scholar
Udalski, A., et al. 2004, Acta Astron., 54, 313Google Scholar
Udalski, A., et al. 2005 ApJ, 628, L109CrossRefGoogle Scholar
Woźniak, P. R., et al. 2001, Acta Astronomica, 51, 175Google Scholar