Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T05:55:06.119Z Has data issue: false hasContentIssue false

Coupled Alfvén and kink oscillations in an inhomogeneous corona

Published online by Cambridge University Press:  08 June 2011

David J. Pascoe
Affiliation:
School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS, United Kingdom email: [email protected]
Andrew N. Wright
Affiliation:
School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS, United Kingdom email: [email protected]
Ineke De Moortel
Affiliation:
School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS, United Kingdom email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We perform 3D numerical simulations of footpoint-driven transverse waves propagating in a low β plasma. The presence of inhomogeneities in the density profile leads to the coupling of the driven kink mode to Alfvén modes by resonant absorption. The decay of the propagating kink wave as energy is transferred to the local Alfvén mode is in good agreement with a modified interpretation of the analytical expression derived for standing kink modes. This coupling may account for the damping of transverse velocity perturbation waves which have recently been observed to be ubiquitous in the solar corona.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Arber, T. D., Longbottom, A. W., Gerrard, C. L., & Milne, A. M. 2001, JCP, 171, 151Google Scholar
De Groof, A., Paes, K., & Goossens, M. 2002, A&A, 386, 681Google Scholar
Edwin, P. M. & Roberts, B. 1983, Solar Phys., 88, 179CrossRefGoogle Scholar
Goossens, M., Hollweg, J. V., & Sakurai, T. 1992, Solar Phys., 138, 233CrossRefGoogle Scholar
Goossens, M., Terradas, J., Andries, J., Arregui, I., & Ballester, J. L. 2009, A&A, 503, 213Google Scholar
Heyvaerts, J. & Priest, E. R. 1983, ApJ, 117, 220Google Scholar
Hollweg, J. V. & Yang, G. 1988, JGR, 93, 5423CrossRefGoogle Scholar
Hood, A. W., Brooks, S. J., & Wright, A. N. 2005, Proc. R. Soc. Lond. A, 461, 237Google Scholar
Mann, I. R., Wright, A. N., & Cally, P. S. 1995, JGR, 100, 19441CrossRefGoogle Scholar
Pascoe, D. J., Wright, A. N., & De Moortel, I. 2010, ApJ, 711, 990CrossRefGoogle Scholar
Roberts, B. 2008, in: Erdélyi, R. & Mendoza-Briceño, C. A. (eds.), Waves & Oscillations in the Solar Atmosphere: Heating and Magneto-Seismology, Proc. IAU Symposium No. 247 (Cambridge: CUP), p. 3Google Scholar
Ruderman, M. S. & Roberts, B. 2002, ApJ, 577, 475CrossRefGoogle Scholar
Terradas, J., Oliver, R., & Ballester, J. L. 2006, ApJ, 642, 533CrossRefGoogle Scholar
Terradas, J., Arregui, I., Oliver, R., & Ballester, J. L. 2008, ApJ, 679, 1611CrossRefGoogle Scholar
Tomczyk, S. & McIntosh, S. W. 2009, ApJ, 697, 1384CrossRefGoogle Scholar
Tomczyk, S., McIntosh, S. W., Keil, S. L., Judge, P. G., Schad, T., Seeley, D. H., & Edmondson, J. 2007, Science, 317, 1192Google Scholar
Van Doorsselaere, T., Nakariakov, V. M., & Verwichte, E. 2008a, ApJ, 676, L73CrossRefGoogle Scholar
Van Doorsselaere, T., Brady, C. S., Verwichte, E., & Nakariakov, V. M. 2008b, A&A, 491, L9Google Scholar