Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T22:43:11.587Z Has data issue: false hasContentIssue false

Coronal Mass Ejections travel time

Published online by Cambridge University Press:  12 September 2017

Carlos Roberto Braga
Affiliation:
National Institute for Space Research, Av. Dos Astronautas 1758, Jd. Granja, São José dos Campos, SP, Brazil email: [email protected]
Rafael Rodrigues Souza de Mendonça
Affiliation:
National Institute for Space Research, Av. Dos Astronautas 1758, Jd. Granja, São José dos Campos, SP, Brazil email: [email protected]
Alisson Dal Lago
Affiliation:
National Institute for Space Research, Av. Dos Astronautas 1758, Jd. Granja, São José dos Campos, SP, Brazil email: [email protected]
Ezequiel Echer
Affiliation:
National Institute for Space Research, Av. Dos Astronautas 1758, Jd. Granja, São José dos Campos, SP, Brazil email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Coronal mass ejections (CMEs) are the main source of intense geomagnetic storms when they are earthward directed. Studying their travel time is a key-point to understand when the disturbance will be observed at Earth. In this work, we study the CME that originated the interplanetary disturbance observed on 2013/10/02. According to the observations, the CME that caused the interplanetary disturbance was ejected on 2013/09/29. We obtained the CME speed and estimate of the time of arrival at the Lagrangian Point L1 using the concept of expansion speed. We found that observed and estimated times of arrival of the shock differ between 2 and 23 hours depending on method used to estimate the radial speed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Braga, C. R., Dal Lago, A., & Stenborg, G. 2013, ASR, 51, 1949 Google Scholar
Brueckner, et al., 1995, Solar Phys., 162, 357 CrossRefGoogle Scholar
Dal, A., Lago, R. & Gonzalez, W. D., 2003, ASR, 32, 2637 Google Scholar
Domingo, V., Fleck, B., & Poland, A. I., 1995, Solar Phys., 162, 1 Google Scholar
Gonzalez, W. D., Tsurutani, B. T., & Clúa de Gonzalez, A. L. C. 1999, SSRv, 88, 529.Google Scholar
Gopalswany, N., Lara, A., Yashiro, S. et al., 2001, JGRA, 106, 12, 29207 Google Scholar
Gopalswamy, N., Manoharan, P. K., & Yashiro, S., 2003, GRL, 30, 2232 Google Scholar
Gosling, J. T. 1990, in: Russell, C. T., Priest, E. R. & Lee, L. C. Physics of Magnetic Flux Ropes, Geophysics Monograph, 58 (Washington, DC: American Geophysical Union), 343 CrossRefGoogle Scholar
Kaiser, M. L., Kucera, T. A., Davila, J. M. et al., 2008, SSRv, 136, 5 Google Scholar
Lepping, R. P., Wu, C. C., & Berdichevsky, D. B., 2005, AnGeo, 23, 2687 Google Scholar
Liu, Y. D., Luhmann, J. G., Möstl, C. et al. 2012 ApJ (Letters), 746, L15 CrossRefGoogle Scholar
Möstl, C., Amla, K., Hall, J. R. et al., 2014, ApJ, 787, 119 Google Scholar
Robbrecht, E. & Berghmans, D., 2004, A&A, 425, 1097 Google Scholar
Schwenn, R., Dal Lago, A., Huttenen, E., & Gonzalez, W. D., 2005, AnGeo, 23, 1033 Google Scholar
Yashiro, S., Gopalswamy, N., Michalek, G. et al., 2004, JGRA, 109, A07105 Google Scholar