Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T22:38:07.754Z Has data issue: false hasContentIssue false

Coronal Mass Ejections and Angular Momentum Loss in Young Stars

Published online by Cambridge University Press:  06 January 2014

Alicia N. Aarnio
Affiliation:
Dept. of Astronomy, University of Michigan, Ann Arbor, MI, 48109, USA email: [email protected]
Keivan G. Stassun
Affiliation:
Dept. of Physics & Astronomy, Vanderbilt University, Nashville, TN, 37235, USA Dept. of Physics, Fisk University, Nashville, TN, 37208USA
Sean P. Matt
Affiliation:
School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In our own solar system, the necessity of understanding space weather is readily evident. Fortunately for Earth, our nearest stellar neighbor is relatively quiet, exhibiting activity levels several orders of magnitude lower than young, solar-type stars. In protoplanetary systems, stellar magnetic phenomena observed are analogous to the solar case, but dramatically enhanced on all physical scales: bigger, more energetic, more frequent. While coronal mass ejections (CMEs) could play a significant role in the evolution of protoplanets, they could also affect the evolution of the central star itself. To assess the consequences of prominence eruption/CMEs, we have invoked the solar-stellar connection to estimate, for young, solar-type stars, how frequently stellar CMEs may occur and their attendant mass and angular momentum loss rates. We will demonstrate the necessary conditions under which CMEs could slow stellar rotation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Aarnio, A. N., Matt, S. P., & Stassun, K. G. 2012, ApJ, 760, 9Google Scholar
Aarnio, A. N., Llama, J., Jardine, M., & Gregory, S. G. 2012, MNRAS, 421, 1797Google Scholar
Aarnio, A. N., Stassun, K. G., Hughes, W. J., & McGregor, S. L. 2011, Solar Phys., 268, 195Google Scholar
Aarnio, A. N., Stassun, K. G., & Matt, S. P. 2010, ApJ, 717, 93Google Scholar
Albacete Colombo, J. F., Flaccomio, E., Micela, G., Sciortino, S., & Damiani, F. 2007, A&A, 464, 211Google Scholar
Aschwanden, M. J., Stern, R. A., & Güdel, M. 2008, ApJ 672, 659Google Scholar
Collier Cameron, A. & Robinson, R. D. 1989, MNRAS, 238, 657Google Scholar
Collier Cameron, A. & Robinson, R. D. 1989, MNRAS, 236, 57Google Scholar
Collier Cameron, A., Bedford, D. K., Rucinski, S. M., Vilhu, O., & White, N. E. 1988, MNRAS, 231, 131Google Scholar
Dunstone, N. J., Collier Cameron, A., Barnes, J. R., & Jardine, M. 2006, MNRAS, 373, 1308Google Scholar
Favata, F., Flaccomio, E., Reale, F., Micela, G., Sciortino, S., Shang, H., Stassun, K. G., & Feigelson, E. D. 2005, ApJS, 160, 469Google Scholar
Getman, K. V.et al. 2005, ApJS, 160, 319Google Scholar
Hilton, E. J., Hawley, S. L., Kowalski, A. F., & Holtzman, J. 2011, ASPC 16th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, 448, 197Google Scholar
Maehara, H., Shibayama, T., Notsu, S., Notsu, Y., Nagao, T., Kusaba, S., Honda, S., Nogami, D., & Shibata, K. 2012, Nature, 485, 478Google Scholar
Maggio, A., Pallavicini, R., Reale, F., & Tagliaferri, G. 2000, A&A, 356, 627Google Scholar
Matt, S. P. & Pudritz, R. E. 2005, ApJL, 632, L135Google Scholar
Reale, F. & Micela, G. 1998, A&A, 334, 1028Google Scholar
Shibata, K. & Yokoyama, T. 2002, ApJ, 577, 422Google Scholar