Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T06:31:43.910Z Has data issue: false hasContentIssue false

Coronal influence on dynamos

Published online by Cambridge University Press:  07 August 2014

Jörn Warnecke
Affiliation:
NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden, email: [email protected] Department of Astronomy, Stockholm University, SE-10691 Stockholm, Sweden
Axel Brandenburg
Affiliation:
NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden, email: [email protected] Department of Astronomy, Stockholm University, SE-10691 Stockholm, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report on turbulent dynamo simulations in a spherical wedge with an outer coronal layer. We apply a two-layer model where the lower layer represents the convection zone and the upper layer the solar corona. This setup is used to study the coronal influence on the dynamo action beneath the surface. Increasing the radial coronal extent gradually to three times the solar radius and changing the magnetic Reynolds number, we find that dynamo action benefits from the additional coronal extent in terms of higher magnetic energy in the saturated stage. The flux of magnetic helicity can play an important role in this context.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Blackman, E. G. & Field, G. B. 2003, ApJ, 534, 984Google Scholar
Brandenburg, A., Candelaresi, S., & Chatterjee, P. 2009, MNRAS, 398, 1414CrossRefGoogle Scholar
Brandenburg, A., & Subramanian, K. 2005, Astron. Nachr., 326, 400Google Scholar
Del Sordo, F., Guerrero, G., & Brandenburg, A. 2013, MNRAS, 429, 1686Google Scholar
Haugen, N. E. L., Brandenburg, A., & Dobler, W. 2004, Phys. Rev. E, 70, 016308Google Scholar
Käpylä, P. J., Korpi, M. J., & Brandenburg, A. 2010, A&A, 518, A22Google Scholar
Käpylä, P. J., Mantere, M. J., Cole, E., Warnecke, J., & Brandenburg, A. 2013, ApJ, to be published arXiv:1301.2595Google Scholar
Mitra, D., Tavakol, R., Brandenburg, A., & Moss, D. 2009, ApJ, 697, 923CrossRefGoogle Scholar
Mitra, D., Tavakol, R., Käpylä, P. J., & Brandenburg, A. 2010a, ApJL, 719, L1Google Scholar
Subramanian, K. & Brandenburg, A. 2006, ApJ, 648, L71CrossRefGoogle Scholar
Warnecke, J. & Brandenburg, A. 2010, A&A, 523, A19Google Scholar
Warnecke, J., Brandenburg, A., & Mitra, D. 2011, A&A, 534, A11Google Scholar
Warnecke, J., Brandenburg, A., & Mitra, D. 2012a, JSWSC, 2, A11Google Scholar
Warnecke, J., Käpylä, P. J., Mantere, M. J., & Brandenburg, A. 2012b, Solar Phys., 280, 299Google Scholar
Warnecke, J., Käpylä, P. J., Mantere, M. J., & Brandenburg, A. 2013a, ApJ, to be published arXiv:1301.2248Google Scholar
Warnecke, J., Losada, I. R., Brandenburg, A., Kleeorin, N. & Rogachevskii, I. 2013b, ApJ, submitted arXiv:1308.1080Google Scholar