Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T19:51:06.771Z Has data issue: false hasContentIssue false

Coronal global EIT waves as tools for multiple diagnostics

Published online by Cambridge University Press:  01 September 2007

I. Ballai
Affiliation:
SP2RC, Department of Applied Mathematics, University of Sheffield, Sheffield S3 7RH, UK email: [email protected]; [email protected]
M. Douglas
Affiliation:
SP2RC, Department of Applied Mathematics, University of Sheffield, Sheffield S3 7RH, UK email: [email protected]; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations in EUV lines of the solar corona revealed large scale propagating waves generated by eruptive events able to travel across the solar disk for large distances. In the low corona, CMEs are known to generate, e.g. EIT waves which can be used to sample the coronal local and global magnetic field. This contribution presents theoretical models for finding values of magnetic field in the quiet Sun and coronal loops based on the interaction of global waves and local coronal loops as well as results on the generation and propagation of EIT waves. The physical connection between local and global solar coronal events (e.g. flares, EIT waves and coronal loop oscillations) will also be explored.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Aschwanden, M.J., Fletcher, L., Schrijver, C.J. & Alexander, D. 1999, Astrophys. J, 520, 880Google Scholar
Attrill, G.D.R., Harra, L.K., van Driel-Gesztelyi, L., Démoulin, P. & Wüsler, J.-P. 2007a, Astron. Nachrt., 328, 760CrossRefGoogle Scholar
Attrill, G.D.R., Harra, L.K., van Driel-Gesztelyi, L. & Démoulin, P. 2007b, Astrophys. J., 656, L101Google Scholar
Ballai, I, Erdélyi, R. & Pintér, B 2005, Astrophys. J., 633, L145Google Scholar
Ballai, I. 2007, Sol. Phys., 246, 177Google Scholar
Banerjee, D., Erdélyi, R., Oliver, R. & O'Shea, E. 2007, Sol. Phys, 246, 3CrossRefGoogle Scholar
Chaplin, W.J., Dumbhill, A.H., Elsworth, Y., Isaak, G.R., McLeod, C.P. et al. 2003, Mon. Not. Roy. Astron. Soc., 343, 813CrossRefGoogle Scholar
Chen, P.F., Wu, S.T., Shibata, K. & Fang, C. 2002, Astrophys. J, 572, L99Google Scholar
Delanée, C. 2000, Astrophys. J, 545, 512CrossRefGoogle Scholar
De Pontieu, B., Erdélyi, R., James, S. 2004, Nature, 430, 536CrossRefGoogle Scholar
De Pontieu, B. & Erdélyi, R. 2006, Phil. Trans. Roy. Soc. London Ser. A, 364, 383Google Scholar
Harra, L.K. & Sterling, A.C. 2003, Astrophys. J., 587, 429CrossRefGoogle Scholar
Erdélyi, R. 2006, Phil. Trans. Roy. Soc. London Ser. A, 364, 351Google Scholar
Erdélyi, R. & Verth, G. 2007, Astron. Astrophys., 462, 743CrossRefGoogle Scholar
Nakariakov, V.M., Ofman, L., DeLuca, E.E., Roberts, B. & Davila, J.M. 1999, Science, 285, 862CrossRefGoogle Scholar
Nowak, T., Ulmschneider, P. 1977, Astron. Astrophys., 60, 413Google Scholar
Lou, Y.Q. 1996, Mon. Not. Roy. Astron. Soc., 281, 750CrossRefGoogle Scholar
Roberts, B, Edwin, P.M. & Benz, A.O. 1984, Astrophys. J., 279, 857CrossRefGoogle Scholar
Sturrock, P., Wheatland, M.S., Acton, L. 1996, Astrophys. J., 461, L115Google Scholar
Terradas, J., Andries, J. & Goossens, M. 2007, Astron. Astrophys., 469, 1135CrossRefGoogle Scholar
Verth, G., van Doorsseleare, T., Erdélyi, R. & Goossens, M. 2007, Astron. Astrophys., 475, 341Google Scholar
Wang, Y.M. 2000, Astrophys. J., 543, L89CrossRefGoogle Scholar
Warmuth, A., Vrsnak, B., Magdalenic, J., Hanslmeier, A. & Otruba, W. 2004, Astron. Astrophys., 418, 1117Google Scholar
Wills-Davey, M.J. & Thompson, B.J. 1999, Sol. Phys., 190, 467CrossRefGoogle Scholar