Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T14:10:53.579Z Has data issue: false hasContentIssue false

Convection and pulsation in red giant stars

Published online by Cambridge University Press:  01 August 2006

P. R. Wood*
Affiliation:
Research School of Astronomy & Astrophysics, Australian National University, Cotter Road, Weston Creek ACT 2611, Australia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Convection strongly influences the periods, stability and amplitudes of pulsation in red giant stars. For example, changing the efficiency of convection (the mixing length parameter) changes the radius and the effective temperature of a red giant, which in turn changes the pulsation period at a given luminosity. Since essentially all the energy flux outside the nuclear-burning core is carried by convection, it is the variation of convective energy transport throughout the pulsation cycle that determines pulsation stability. In both linear and nonlinear pulsation models, the turbulent viscosity that results from the interaction of pulsation with turbulent convection provides a strong damping effect on pulsation and, in nonlinear models, it determines the limiting amplitude. In this paper, these and other topics are discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Bedding, T.R., Zijlstra, A.A., Jones, A., & Foster, G. 1998, MNRAS 301, 1073CrossRefGoogle Scholar
Fox, M.W. & Wood, P.R. 1982, ApJ 259, 198Google Scholar
Fraser, O.J., Hawley, S.L., Cook, K.H., & Keller, S.C. 2005, AJ 129, 768CrossRefGoogle Scholar
Gautschy, A. 1999, A&A 349, 209Google Scholar
Groenewegen, M.A.T. 2004, A&A 425, 595Google Scholar
Hinkle, K.H., Lebzelter, T., Joyce, R.R., & Fekel, F.C. 2002, AJ 123, 1002CrossRefGoogle Scholar
Ita, Y., Tanabé, T, Matsunaga, N., Nakajima, Y., Nagashima, C., Nagayama, T., Kato, D., Kurita, M., Nagata, T., Sato, S., Tamura, M., Nakaya, H., & Nakada, Y. 2004, MNRAS 347, 720CrossRefGoogle Scholar
Lebzelter, T. & Wood, P.R. 2005, A&A 441, 1117Google Scholar
Olivier, E.A. & Wood, P.R. 2005, MNRAS 362, 1396CrossRefGoogle Scholar
Ostlei, D.A. & Cox, A.N. 1986, ApJ 311, 864CrossRefGoogle Scholar
Soszyński, I., Udalski, A., Kubiak, M., Szymański, M., Pietrzyński, G., Zebruń, K., Szewczyk, O., & Wyrzykowski, L. 2004a, Acta Astr. 54, 129Google Scholar
Soszyński, I., Udalski, A., Kubiak, M., Szymański, M., Pietrzyński, G., Zebruń, K., Szewczyk, O., Wyrzykowski, L., & Dziembowski, W.A. 2004b, Acta Astr. 54, 347Google Scholar
Soszyński, I., Udalski, A., Kubiak, M., Szymański, M., Pietrzyński, G., Zebruń, K., Szewczyk, O., Wyrzykowski, L., & Ulaczyk, K. 2005, Acta Astr. 55, 331Google Scholar
Tuchman, Y., Sack, N., & Barkat, Z. 1978, ApJ 219, 183CrossRefGoogle Scholar
Wood, P.R. 1974, ApJ 190, 609CrossRefGoogle Scholar
Wood, P.R. & Zarro, D.M. 1981, ApJ 247, 247CrossRefGoogle Scholar
Wood, P.R. 1995, in Astrophysical Applications of Stellar Pulsation Theory, ASP Conf. Ser. 83, 127Google Scholar
Wood, P.R., Habing, H.J., & McGregor, P.J. 1998, A&A 336, 925Google Scholar
Wood, P.R. and the MACHO Collaboration 1999, in IAU Symp. 191 AGB stars, p. 151Google Scholar
Wood, P.R. 2000b, PASA 17, 18CrossRefGoogle Scholar
Wood, P.R. 2000b, in The Impact of Large-Scale Surveys on Pulsating Star research, ASP Conf. Ser. 203, 379Google Scholar
Wood, P.R., Olivier, E.A., & Kawaler, S.D. 2004, ApJ 604, 800CrossRefGoogle Scholar
Wood, P.R. 2006, MmSAI 77, 76Google Scholar
Xiong, D.R., Deng, L., & Cheng, Q. L. 1998, ApJ 499, 355Google Scholar
Ya'Ari, A. & Tuchman, Y. 1996, ApJ 456, 350CrossRefGoogle Scholar
Zijlstra, A.A., Bedding, T.R., Mattei, J.A. 2002, MNRAS 334, 498CrossRefGoogle Scholar