Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T23:01:43.818Z Has data issue: false hasContentIssue false

The contribution of Globular Clusters to the stellar halo using APOGEE and GAIA

Published online by Cambridge University Press:  11 March 2020

Danny Horta
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, Liverpool Brownlow Hill, L3 5RF, UK email: [email protected]
J. Ted Mackereth
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, Liverpool Brownlow Hill, L3 5RF, UK email: [email protected] Dept. of Astrophysics and Astronomy, Birmingham University, B15 2TT, Birmingham, UK
Ricardo P. Schiavon
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, Liverpool Brownlow Hill, L3 5RF, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Over the last decade, much of the key questions in Galactic Archaeology have been asnwered by studying the Milky Way’s globular cluster (GC) system. Following on this, it has been shown that a substantial fraction of the Milky Way’s stellar halo field arises from GC dissolution. In this work, we make use of the latest data release fromn the APOGEE survey to study GC dissolution ratios in different spatial regions of the Galaxy. Our results will allow us to constrain many astrophysical questions, such as: the origin of N-Rich stars, the mass contribution from GCs to the stellar halo of the Galaxy, the origin of the Galactic GC system and the mass assembly of the Milky Way.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bovy, J., Rix, H.-W., Green, G. M., Schlafly, E. F., & Finkbeiner, D. P., 2015, 10.3847/0004-637X/818/2/130Google Scholar
Das, P., Williams, A., & Binney, J. 2016, MNRAS, 463, 3169CrossRefGoogle Scholar
Deason, A. J., Belokurov, V., & Evans, N. W. 2011, MNRAS, 416, 2903CrossRefGoogle Scholar
Forbes, D. A. & Bridges, T. 2010, MNRAS, 404, 1203Google Scholar
Horta, D., Mackereth, J. T., Schiavon, P. R., et al. 2020, in prep.Google Scholar
Iorio, G., Belokurov, V., & Erkal, D. 2018, MNRAS, 474, 2142CrossRefGoogle Scholar
Koch, A., Grebel, E. K., & Martell, S. 2019, A&A, 625, A75Google Scholar
Leaman, R., VandenBerg, D. A., & Trevor Mendel, J. 2013, MNRAS, 436, 122CrossRefGoogle Scholar
Mackereth, J. T.et al. 2015, MNRAS, 471, 3057CrossRefGoogle Scholar
Marin-Franch, A.et al. 2009, ApJ, 694, 1498CrossRefGoogle Scholar
Schiavon, R. P.et al. 2017, MNRAS, 465, 501CrossRefGoogle Scholar
Schwartz, G. 1978, Annals of Statistics, 461, 6Google Scholar
Searle, L. & Zinn, R. 1978, ApJ, 225, 357CrossRefGoogle Scholar
Xue, X.-X., Rix, H.-W., Ma, Z., Morrison, H., Bovy, J., Sesar, B., & Janesh, W. 2015, ApJ, 809, 144CrossRefGoogle Scholar