Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T22:19:19.606Z Has data issue: false hasContentIssue false

Contribution of energetic ion secondary particles to solar flare radio spectra

Published online by Cambridge University Press:  12 September 2017

Jordi Tuneu
Affiliation:
Center for Radio Astronomy and Astrophysics, Mackenzie Presbyterian University, Sao Paulo, Brazil email: [email protected]
Sérgio Szpigel
Affiliation:
Center for Radio Astronomy and Astrophysics, Mackenzie Presbyterian University, Sao Paulo, Brazil email: [email protected]
Guillermo Giménez de Castro
Affiliation:
Center for Radio Astronomy and Astrophysics, Mackenzie Presbyterian University, Sao Paulo, Brazil email: [email protected]
Alexander MacKinnon
Affiliation:
School of Physics and Astronomy, University of Glasgow, Glasgow, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent observations of solar flares at high frequencies have provided evidence of a new spectral component with flux increasing with frequency in the THz range. Its origin remains unclear. Here, we present preliminary results of simulations of synchrotron emission due to secondary positrons and electrons produced in nuclear reactions during a solar flare. We use the general purpose Monte-Carlo code FLUKA to obtain distributions of secondary particles resulting from accelerated protons interacting in the solar atmosphere. We calculate the synchrotron radiation spectrum and compare our results to observations of the November 4th, 2003 burst event.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P., 2009, ARAA, 47, 481522 Google Scholar
Ferrari, A., Sala, P. A., & Fasso, A., et al. 2005, Technical Report, CERN-2005-10Google Scholar
Kaufmann, P., Raulin, J.-P., & Melo, A. M., et al., 2002, Astrophys. J., 574, 10591065 CrossRefGoogle Scholar
Kaufmann, P., Raulin, J.-P., & de Castro, C. G. G., et al., 2004, Astrophys. J., 603, L121L124 Google Scholar
Krucker, S., de Castro, C. G. G., & Hudson, H. S., et al., 2013, Astron. Astrophys. Rev., 21, 58 CrossRefGoogle Scholar
MacKinnon, A., Szpigel, S., de Castro, C. G. G., & and Tuneu, J. 2016, Sol. Phys., submitted Google Scholar
Ramaty, R., Schwartz, R. A., Enome, S., & Nakajima, H., 1994, Astrophys. J., 436, 941949 Google Scholar
Shih, A. Y., Lin, R. P., & and Smith, D. M., 2009, Astrophys. J. Lett., 698, L152L157 Google Scholar
Silva, A. V. R., Share, G. H., & Murphy, R. J, et al., 2007, Sol. Phys., 245, 311326 CrossRefGoogle Scholar
Trottet, G., Krucker, S., Lüthi, T., & Magun, A., 2007, Astrophys. J., 678, 509514 CrossRefGoogle Scholar
Vilmer, N., MacKinnon, A. L., & Hurford, G. J., 2011, Space Sci. Rev., 159, 167 CrossRefGoogle Scholar