Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T04:44:42.128Z Has data issue: false hasContentIssue false

Contact Tracing of Massive Binary Stars

Published online by Cambridge University Press:  29 August 2024

Jan Henneco*
Affiliation:
Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany Centre for Astronomy of Heidelberg University, Königstuhl 12, 69117 Heidelberg, Germany
Fabian R. N. Schneider
Affiliation:
Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany Centre for Astronomy of Heidelberg University, Königstuhl 12, 69117 Heidelberg, Germany
Saskia Hekker
Affiliation:
Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany Centre for Astronomy of Heidelberg University, Königstuhl 12, 69117 Heidelberg, Germany
Eva Laplace
Affiliation:
Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stellar mergers produce more massive, rejuvenated (strongly magnetic) stars, with potentially peculiar properties, and can be detected as luminous red novae. Using a grid of detailed 1D binary evolution models, we aim to determine which binary systems are likely to merge and at what evolutionary stage. This will tell us more about the merger products, and might help us understand some of the trends found in observed single- and multiple-star populations.

Type
Poster Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

De Marco, O., & Izzard, R. G. 2017, PASA, 34, e001 Google Scholar
de Mink, S. E., Sana, H., Langer, N., Izzard, R. G., & Schneider, F. R. N. 2014, ApJ, 782, 7 Google Scholar
Nandez, J. L. A., Ivanova, N., & Lombardi, J. C. Jr. 2014, The Astrophysical Journal, 786, 39, aDS Bibcode: 2014ApJ…786…39NGoogle Scholar
Paxton, B., et al. 2019, ApJS, 243, 10 Google Scholar
Sana, H., et al. 2012, Science, 337, 444 CrossRefGoogle Scholar
Schneider, F. R. N., Ohlmann, S. T., Podsiadlowski, P., Röpke, F. K., Balbus, S. A., Pakmor, R., & Springel, V. 2019, Nature, 574, 211 Google Scholar
Schneider, F. R. N., Podsiadlowski, P., Langer, N., Castro, N., & Fossati, L. 2016, MNRAS, 457, 2355 Google Scholar
Wang, C., et al. 2022, Nature Astronomy, arXiv: 2202.05552Google Scholar