Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T10:24:32.840Z Has data issue: false hasContentIssue false

Constraints on the Nature of the s- and r-processes

Published online by Cambridge University Press:  09 March 2010

Christopher Sneden
Affiliation:
Dept. of Astronomy, The University of Texas, Austin, TX 78712 email: [email protected]
John J. Cowan
Affiliation:
Homer L. Dodge Dept. of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 email: [email protected]
Roberto Gallino
Affiliation:
Dipartimento di Fisica Generale, Universita' di Torino, 10125 Torino, Italy email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Neutron-capture (Z > 30) elements are detected in many very metal-poor halo stars, and so they must have been manufactured by some of the earliest element donors in our Galaxy's history. The bulk amounts of neutron-capture elements with respect to the iron group vary by several orders of magnitude from star to star at low metallicities. Additionally, abundance distributions among these elements are often strikingly different from that of the solar system. Some stars exhibit abundances that must have been made purely in “rapid” neutron-capture events (the r-process), some in “slow” events (the s-process), and some have hybrid mixes. Here we summarize the major observed categories of the neutron-capture abundances in metal-poor stars, and discuss their implications for early Galactic nucleosynthesis.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Aoki, W. et al. 2007, ApJ 655, 492Google Scholar
Aoki, W., Norris, J. E., Ryan, S. G., Beers, T. C., & Ando, H. 2002a, PASJ 54, 933CrossRefGoogle Scholar
Aoki, W. et al. 2002, ApJ 580, 1149Google Scholar
Arlandini, C. et al. 1999, ApJ 525, 886CrossRefGoogle Scholar
Barklem, P. S., et al. 2005, A&A 439, 129Google Scholar
Beers, T. C. & Christlieb, N. 2005, ARAA 43, 531CrossRefGoogle Scholar
Bisterzo, S., Gallino, R., Straniero, O., & Cristallo, S. 2009, MNRAS in pressGoogle Scholar
Bisterzo, S., Gallino, R., Straniero, O., & Aoki, W. 2009, PASA 26, 314CrossRefGoogle Scholar
Cameron, A. G. W. 1973, Sp. Sci. Rev. 15, 121CrossRefGoogle Scholar
Chieffi, A. & Straniero, O. 1989, ApJS 71, 47CrossRefGoogle Scholar
Cowan, J. J., et al. 2005, ApJ 627, 238Google Scholar
Farouqi, K. et al. 2009, ApJ 694, L49Google Scholar
Fröhlich, C. et al. 2006, Phys. Rev. Lett. 96 142502Google Scholar
Griffin, R., Gustafsson, B., Vieira, T., & Griffin, R. 1982, MNRAS 198, 637Google Scholar
Hill, V., et al. 2002, A&A 387, 560Google Scholar
Honda, S., Aoki, W., Ishimaru, Y., & Wanajo, S. 2007, ApJ 666, 1189CrossRefGoogle Scholar
Honda, S., Aoki, W., Ishimaru, Y., Wanajo, S., & Ryan, S. G. 2006, ApJ 643, 1180Google Scholar
Husti, L., Gallino, R., Bisterzo, S., Straniero, O., & Cristallo, S. 2009, PASA 26, 176Google Scholar
Kratz, K.-L. et al. 2007, ApJ 662, 39Google Scholar
Lucatello, S., et al. 2006, ApJ 652, L37CrossRefGoogle Scholar
Montes, F., et al. 2007, ApJ 671, 1685Google Scholar
Simmerer, J. et al. 2004, ApJ 617, 1091Google Scholar
Sneden, C., Cowan, J. J., & Gallino, R. 2008, ARAA 46, 241CrossRefGoogle Scholar
Sneden, C., et al. 2003, ApJ 591, 936Google Scholar
Sneden, C., Lawler, J. E., Cowan, J. J., Ivans, I. I., & Den Hartog, E. A. 2009, ApJ 182, 80Google Scholar
Sneden, C. & Parthasarathy, M. 1983, ApJ 267, 757CrossRefGoogle Scholar
Spite, M. & Spite, F. 1978, A&A 67, 23Google Scholar
Travaglio, C. et al. 2004, ApJ 601, 864CrossRefGoogle Scholar
Truran, J. W. 1981, A&A 97, 391Google Scholar
Westin, J., Sneden, C., Gustafsson, B., & Cowan, J. J. 2000, ApJ 530, 783Google Scholar