Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T06:43:34.590Z Has data issue: false hasContentIssue false

Constraints on a strong X-ray flare in the Seyfert galaxy MCG–6-30-15

Published online by Cambridge University Press:  01 August 2006

R. W. Goosmann
Affiliation:
Astronomical Institute, Academy of Sciences, Boční II 1401, 14131 Prague, Czech Republic email: [email protected]
B. Czerny
Affiliation:
Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw, Poland
V. Karas
Affiliation:
Astronomical Institute, Academy of Sciences, Boční II 1401, 14131 Prague, Czech Republic email: [email protected]
M. Dovčiak
Affiliation:
Astronomical Institute, Academy of Sciences, Boční II 1401, 14131 Prague, Czech Republic email: [email protected]
G. Ponti
Affiliation:
Dipartimento di Astronomia, Università di Bologna, Via Ranzani 1, 40127, Bologna, Italy
M. Mouchet
Affiliation:
Laboratoire ApC, Université Denis Diderot, 2 place Jussieu, 75251 Paris Cedex 05, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss implications of a strong flare event observed in the Seyfert galaxy MCG–6-30-15 assuming that the emission is due to localized magnetic reconnection. We conduct detailed radiative transfer modeling of the reprocessed radiation for a primary source that is elevated above the disk. The model includes relativistic effects and Keplerian motion around the black hole. We show that for such a model setup the observed time-modulation must be intrinsic to the primary source. Using a simple analytical model we then investigate time delays between hard and soft X-rays during the flare. The model considers an intrinsic delay between primary and reprocessed radiation, which measures the geometrical distance of the flare source to the reprocessing sites. The observed time delays are well reproduced if one assumes that the reprocessing happens in magnetically confined, cold clouds.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Ballantyne, D. R., Vaughan, S. & Fabian, A. C. 2003, MNRAS, 342, 239CrossRefGoogle Scholar
Dovčiak, M., Karas, V. & Yaqoob, T. 2004, ApJS, 153, 205CrossRefGoogle Scholar
Dumont, A.-M., Abrassart, A. & Collin, S. 2000, A&A, 357, 823Google Scholar
Dumont, A.-M., Collin, S., Paletou, F., Coupé, S., Godet, O. & Pelat, D. 2003, A&A, 407, 13Google Scholar
Goosmann, R. W., Czerny, B., Karas, V., Ponti, G., A&A in press (astro-ph 0702685)Google Scholar
Goosmann, R. W. 2006, Accretion and Emission Close to Supermassive Black Holes in Quasars and AGN: Modeling the UV–X Spectrum, PhD thesis (Universität Hamburg, Germany)Google Scholar
Kuncic, Z., Celotti, A. & Rees, M. J. 1997, MNRAS, 284, 717Google Scholar
Miniutti, G., Fabian, A. C. 2004, MNRAS, 349, 1435CrossRefGoogle Scholar
Ponti, G., Cappi, M., Dadina, M. & Malaguti, G. 2004, A&A, 417, 451Google Scholar
Różańska, A., Dumont, A.-M., Czerny, B. & Collin, S. 2002, MNRAS, 332, 799Google Scholar
Shih, D. C., Iwasawa, K. & Fabian, A. C. 2002, MNRAS, 333, 687CrossRefGoogle Scholar
Wilms, J., Reynolds, C. S., Begelman, M. C., Reeves, J., Molendi, S. et al. 2001, MNRAS, 328, L27Google Scholar