Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T17:17:22.364Z Has data issue: false hasContentIssue false

Constraining the Accretion Flow in Sgr A* by General Relativistic Dynamical and Polarized Radiative Modeling

Published online by Cambridge University Press:  21 February 2013

Roman V. Shcherbakov
Affiliation:
Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA email: [email protected] Hubble Fellow
Robert F. Penna
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
Jonathan C. McKinney
Affiliation:
Physics Department, University of Maryland, College Park, MD 20742-4111, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We briefly summarize the method of simulating Sgr A* polarized sub-mm spectra from the accretion flow and fitting the observed spectrum. The dynamical flow model is based on three-dimensional general relativistic magneto hydrodynamic simulations. Fully self-consistent radiative transfer of polarized cyclo-synchrotron emission is performed. We compile a mean sub-mm spectrum of Sgr A* and fit it with the mean simulated spectra. We estimate the ranges of inclination angle θ=42°–75°, mass accretion rate =(1.4-7.0)×10−8Myear−1, and electron temperature Te=(3–4)×1010K at 6M. We discuss multiple caveats in dynamical modeling, which must be resolved to make further progress.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Broderick, A. E., Fish, V. L., Doeleman, S. S., & Loeb, A. 2011, ApJ, 735, 110CrossRefGoogle Scholar
Dexter, J., Agol, E., Fragile, P. C., & McKinney, J. C. 2010, ApJ, 717, 1092CrossRefGoogle Scholar
Dodds-Eden, K., et al. 2009, ApJ, 698, 676CrossRefGoogle Scholar
Doeleman, S. S., et al. 2008, Nature, 455, 78CrossRefGoogle Scholar
Hawley, J. F., Guan, X., & Krolik, J. H. 2011, ApJ, 738, 84CrossRefGoogle Scholar
Hilburn, G., Liang, E., Liu, S., & Li, H. 2010, MNRAS, 401, 1620CrossRefGoogle Scholar
Huang, L., Liu, S., Shen, Z.-Q., Yuan, Y.-F., Cai, M. J., Li, H., & Fryer, C. L. 2009, ApJ, 703, 557CrossRefGoogle Scholar
Johnson, B. M. & Quataert, E. 2007, ApJ, 660, 1273CrossRefGoogle Scholar
Mościbrodzka, M., Gammie, C. F., Dolence, J. C., Shiokawa, H., & Leung, P. K. 2009, ApJ, 706, 497Google Scholar
Sharma, P., Quataert, E., Hammett, G. W., & Stone, J. M. 2007, ApJ, 667, 714CrossRefGoogle Scholar
Shcherbakov, R. V. 2008, ApJ, 688, 695CrossRefGoogle Scholar
Shcherbakov, R. V. & Baganoff, F. K. 2010, ApJ, 716, 504CrossRefGoogle Scholar
Shcherbakov, R. V. & Huang, L. 2011, MNRAS, 410, 1052CrossRefGoogle Scholar
Shcherbakov, R. V., Penna, R. F., & McKinney, J. C. 2012, ApJ, 755, 133CrossRefGoogle Scholar
Yuan, F., Quataert, E., & Narayan, R. 2003, ApJ, 598, 301CrossRefGoogle Scholar