Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T18:15:19.187Z Has data issue: false hasContentIssue false

Constraining pulsar birth properties with supernova X-ray observations

Published online by Cambridge University Press:  17 October 2017

Y. A. Gallant
Affiliation:
LUPM, U. de Montpellier, CNRS/IN2P3, place E. Bataillon, 34095 Montpellier, France email: [email protected]
R. Bandiera
Affiliation:
INAF – Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy
N. Bucciantini
Affiliation:
INAF – Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy
E. Amato
Affiliation:
INAF – Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A large fraction of core-collapse supernovae are thought to result in the birth of a rotation-powered pulsar, which is later observable as a radio pulsar up to great ages. The birth properties of these pulsars, and in particular the distribution of their initial rotation periods, are however difficult to infer from studies of the radio pulsar population in our Galaxy. Yet the distributions of their birth properties is an important assumption for scenarios in which ultra-high-energy cosmic rays (UHECRs) originate in very young, extragalactic pulsars with short birth periods and/or high magnetic fields.

Using a model of the very young pulsar wind nebula’s dynamical and spectral evolution, with pulsar wind and accelerated particle parameters assumed similar to those inferred from modeling young pulsar wind nebulae (PWNe) in our Galaxy, we show that X-ray observations of supernovae, a few years to decades after the explosion, constitute a favored window to obtain meaningful constraints on the initial spin-down luminosity of the newly-formed pulsar. We examine the expected emerging PWN spectral component, taking into account the X-ray opacity of the expanding supernova ejecta, and find that it is typically best detectable in < 10 keV X-rays some years after the explosion. We use this framework to assess available X-ray observations and flux upper limits on supernovae, building on the work of Perna et al. (2008). We note that a resulting limit on spin-down luminosity corresponds univocally to a limit on the maximum magnetospheric acceleration potential, irrespective of the specific combination of magnetic field and rotation period that achieves it. We use available X-ray observations of supernovae to place constraints on the birth spin-down luminosity and period distribution of classical pulsars. We also examine the case of magnetars, born with much higher magnetic fields, and show that their much shorter initial spin-down time implies that any plausible signature of young magnetar wind nebulae can only be observed in harder X-ray or gamma-rays.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Arons, J. 2003, ApJ, 589, 871 CrossRefGoogle Scholar
Bałucińska-Church, M. & McCammon, D. 1992, ApJ, 400, 699 CrossRefGoogle Scholar
Blasi, P., Epstein, R. I., & Olinto, A. V. 2000, ApJ (Letters), 533, L123 CrossRefGoogle Scholar
Bucciantini, N., Blondin, J. M., Del Zanna, L., & Amato, E. 2003, A&A, 405, 617 Google Scholar
Chevalier, R. A. 2011, AIP Conf. Proc., 1379, 5 (arXiv:1011.3731)Google Scholar
Chevalier, R. A. & Fransson, C. 1992, ApJ, 395, 540 CrossRefGoogle Scholar
de Jager, O. C. & Djannati-Ataï, A. 2009, in: Becker, W. (ed.), Neutron Stars and Pulsars (Berlin and Heidelberg: Springer-Verlag), p. 451 (arXiv:0803.0116)CrossRefGoogle Scholar
Duncan, R. C. & Thompson, C. 1992, ApJ (Letters), 392, L9 CrossRefGoogle Scholar
Fang, K., Kotera, K., & Olinto, A. V. 2012, ApJ, 750, 118 CrossRefGoogle Scholar
Faucher-Giguère, C.-A. & Kaspi, V. M. 2006, ApJ, 643, 332 CrossRefGoogle Scholar
Lemoine, M., Kotera, K., & Pétri, J. 2015, JCAP, 07, 016 (arXiv:1409.0159)CrossRefGoogle Scholar
Medvedev, A. S. & Poutanen, J. 2013, MNRAS, 431, 2690 CrossRefGoogle Scholar
Metzger, B. D., Giannios, D., Thompson, T. A., Bucciantini, N., & Quataert, E. 2011, MNRAS, 413, 2031 CrossRefGoogle Scholar
Murase, K., Kashiyama, K., Kiuchi, K., & Bartos, I. 2015, ApJ, 805, 82 CrossRefGoogle Scholar
Perna, R., Soria, R., Pooley, D., & Stella, L. 2008, MNRAS, 384, 1638 CrossRefGoogle Scholar
Torres, D. F., Cillis, A., Martín, J., & de Oña Wilhelmi, E. 2014, J. High Energy Astrophys., 1, 31 (arXiv:1402.5485)CrossRefGoogle Scholar
van der Swaluw, E., Achterberg, A., Gallant, Y. A., & Tóth, G. 2001, A&A, 380, 309 Google Scholar
Younes, G., Kouveliotou, C., Kargaltsev, O., Gill, R., Granot, J., et al. 2016, ApJ, 824, 138 CrossRefGoogle Scholar