Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T12:22:02.562Z Has data issue: false hasContentIssue false

Considerations in the Interpretation of Cosmological Anomalies

Published online by Cambridge University Press:  01 July 2015

Hiranya V. Peiris*
Affiliation:
Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Anomalies drive scientific discovery – they are associated with the cutting edge of the research frontier, and thus typically exploit data in the low signal-to-noise regime. In astronomy, the prevalence of systematics –- both “known unknowns” and “unknown unknowns” – combined with increasingly large datasets, the widespread use of ad hoc estimators for anomaly detection, and the “look-elsewhere” effect, can lead to spurious false detections. In this informal note, I argue that anomaly detection leading to discoveries of new physics requires a combination of physical understanding, careful experimental design to avoid confirmation bias, and self-consistent statistical methods. These points are illustrated with several concrete examples from cosmology.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Ade, P.et al. 2014, ApJ, 794, 171Google Scholar
Adshead, P., Hu, W., Dvorkin, C., & Peiris, H. V. 2011, Phys. Rev., D84, 043519Google Scholar
Bennett, C. L., Hill, R. S., Hinshaw, G., et al. 2011, ApJS, 192, 17Google Scholar
Bird, S., Peiris, H. V., Viel, M., & Verde, L. 2011, MNRAS, 413, 1717Google Scholar
Conley, A. J.et al. 2006, ApJ, 644, 1Google Scholar
Copi, C., Huterer, D., Schwarz, D., & Starkman, G. 2007, Phys. Rev., D75, 023507Google Scholar
Cruz, M., Turok, N., Vielva, P., Martinez-Gonzalez, E., & Hobson, M. 2007, Science, 318, 1612Google Scholar
Dvorkin, C., Peiris, H. V., & Hu, W. 2008, Phys. Rev., D77, 063008Google Scholar
Feeney, S. M., Johnson, M. C., McEwen, J. D., Mortlock, D. J., & Peiris, H. V. 2013, Phys. Rev., D88, 043012Google Scholar
Feeney, S. M., Johnson, M. C., Mortlock, D. J., & Peiris, H. V. 2012, Phys. Rev. Lett., 108, 241301Google Scholar
Fu, L., Kilbinger, M., Erben, T., et al. 2014Google Scholar
Harrison, P. F. 2002, Journal of Physics G: Nuclear and Particle Physics, 28, 2679Google Scholar
Heymans, C., Van Waerbeke, L., Miller, L., et al. 2012, MNRAS, 427, 146Google Scholar
Huffenberger, K. M., Eriksen, H. K., Hansen, F. K., Banday, A. J., & Górski, K. M. 2008, ApJ, 688, 1Google Scholar
Leistedt, B. & Peiris, H. V. 2014, MNRAS, 444, 2Google Scholar
Leistedt, B., Peiris, H. V., & Roth, N. 2014, ArXiv e-printsGoogle Scholar
Mortonson, M. J., Dvorkin, C., Peiris, H. V., & Hu, W. 2009, Phys. Rev., D79, 103519Google Scholar
Peiris, H., Easther, R., & Flauger, R. 2013, JCAP, 1309, 018Google Scholar
Peiris, H. V. & Verde, L. 2010, Phys. Rev., D81, 021302Google Scholar
Pontzen, A. & Peiris, H. V. 2010, Phys. Rev., D81, 103008Google Scholar
Pullen, A. R. & Hirata, C. M. 2010, JCAP, 5, 27Google Scholar
Roodman, A. 2003, in Statistical Problems in Particle Physics, Astrophysics, and Cosmology, ed. Lyons, L., Mount, R., & Reitmeyer, R., 166Google Scholar
Verde, L., Feeney, S. M., Mortlock, D. J., & Peiris, H. V. 2013, JCAP, 9, 13Google Scholar
Verde, L. & Peiris, H. V. 2008, JCAP, 0807, 009Google Scholar
Wilks, S. S. 1938, The Annals of Mathematical Statistics, 9, 60Google Scholar