Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T12:24:34.105Z Has data issue: false hasContentIssue false

CONDOR observations of high mass star formation in Orion

Published online by Cambridge University Press:  01 August 2006

N. H. Volgenau
Affiliation:
I. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany
M. C. Wiedner
Affiliation:
I. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany
G. Wieching
Affiliation:
I. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany
M. Emprechtinger
Affiliation:
I. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany
F. Bielau
Affiliation:
I. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany
U. U. Graf
Affiliation:
I. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany
C. E. Honingh
Affiliation:
I. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany
K. Jacobs
Affiliation:
I. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany
B. Vowinkel
Affiliation:
I. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany
R. Güsten
Affiliation:
Max Planck Institut für Radioastronomie, 53121 Bonn, Germany
D. Rabanus
Affiliation:
I. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany
J. Stutzki
Affiliation:
I. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany
F. Wyrowski
Affiliation:
Max Planck Institut für Radioastronomie, 53121 Bonn, Germany
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

CONDOR, the CO, N+, Deuterium Observations Receiver, is designed to make velocity-resolved observations of the CO, [NII], and p-H2D+ lines in the 1.4 THz (200-240μm) atmospheric windows. CONDOR's first light observations were made with the APEX telescope in November 2005. The CONDOR beam on APEX (at ν = 1.5 THz) was expected to consist of a 4.3″ main beam and a 73″ error beam; this beam structure was verified from scans of Mars. The pointing accuracy, also determined from Mars scans, was better than 7″. The average atmospheric transmission during our Orion observations (elev~57°) was 19 ± 4% along the line-of-sight. A forward efficiency of Feff = 0.8 was determined from sky dips, and observations of the Moon and Mars were used to couple the CONDOR beam to sources of different sizes (ηc = 0.40 and ~0.10, respectively). For more information, see Wiedner et al. 2006.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Boreiko, R.T., Betz, A.L. & Zmuidzinas, J. 1989, ApJ 337, 332Google Scholar
Wiedner, M.C., Wieching, G., Bielau, F. et al. 2006, A&A 454, L33Google Scholar
Wilson, T.L., Muders, D., Kramer, C., & Henkel, C. 2001, ApJ 557, 240Google Scholar