Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T07:24:37.744Z Has data issue: false hasContentIssue false

Computer Science approach to the stellar fabric of violent starforming regions in AGN

Published online by Cambridge University Press:  01 December 2004

Elena Terlevich
Affiliation:
Instituto Nacional de Astrofísica, Optica y Electrónica, 72840 Puebla, Mexico email: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]
R. Terlevich
Affiliation:
Instituto Nacional de Astrofísica, Optica y Electrónica, 72840 Puebla, Mexico email: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]
J. P. Torres Papaqui
Affiliation:
Instituto Nacional de Astrofísica, Optica y Electrónica, 72840 Puebla, Mexico email: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]
T. Estrada Piedra
Affiliation:
Instituto Nacional de Astrofísica, Optica y Electrónica, 72840 Puebla, Mexico email: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]
O. Fuentes
Affiliation:
Instituto Nacional de Astrofísica, Optica y Electrónica, 72840 Puebla, Mexico email: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]
T. Solorio
Affiliation:
Instituto Nacional de Astrofísica, Optica y Electrónica, 72840 Puebla, Mexico email: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]
S. Bressan
Affiliation:
Instituto Nacional de Astrofísica, Optica y Electrónica, 72840 Puebla, Mexico email: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 535122, Padua, Italy email:[email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In order to analyse the large numbers of Seyfert galaxy spectra available at present, we are testing new techniques to derive their physical parameters fastly and accurately.

We present an experiment on such a new technique to segregate old and young stellar populations in galactic spectra using machine learning methods. We used an ensemble of classifiers, each classifier in the ensemble specializes in young or old populations and was trained with locally weighted regression and tested using ten-fold cross-validation. Since the relevant information concentrates in certain regions of the spectra we used the method of sequential floating backward selection offline for feature selection.

Very interestingly, the application to Seyfert galaxies proved that this technique is very insensitive to the dilution by the Active Galactic Nucleus (AGN) continuum. Comparing with exhaustive search we concluded that both methods are similar in terms of accuracy but the machine learning method is faster by about two orders of magnitude.To search for other articles by the author(s) go to: http://adsabs.harvard.edu/abstract_service.html

Type
ORAL CONTRIBUTIONS
Copyright
© 2004 International Astronomical Union