Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T02:49:24.076Z Has data issue: false hasContentIssue false

Compact Remnant Constraints on the Core-Collapse Engine

Published online by Cambridge University Press:  27 February 2023

Chris L. Fryer*
Affiliation:
Center for Theoretical Astrophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA The George Washington University, Washington, DC 20052, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The convection-enhanced neutrino-driven supernova engine’s success in explaining a myriad of supernova properties has set it as the standard engine behind supernova. However, due to the success of rotationally-powered engines in explaining astrophysical transients like gamma-ray bursts, these engines have been revived as possible drivers of normal supernovae, competing with this standard engine. In this paper, these competing engines, and the constraints placed by compact remnant observations on these engines, are reviewed. We find that, with these constraints, such rotationally-powered engines can explain less than 1% of the current supernova remnants. In addition, we find that the remnant mass distribution can be used to constrain properties of the convection-enhanced neutrino-driven engine, helping astronomers understand the nature of convection in this engine.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, et al. 2021, arXiv:2111.03634 Google Scholar
Akiyama, S., Wheeler, J. C., Meier, D. L., et al. 2003, ApJ, 584, 954CrossRefGoogle Scholar
Altamirano, D., Belloni, T., Linares, M., et al. 2011, ApJL, 742, L17 CrossRefGoogle Scholar
Antoniadis, J., Freire, P. C. C., Wex, N., et al. 2013, Science, 340, 448 CrossRefGoogle Scholar
Antoniadis, J., Tauris, T. M., Ozel, F., et al. 2016, arXiv:1605.01665 Google Scholar
Belczynski, K., Wiktorowicz, G., Fryer, C. L., et al. 2012, ApJ, 757, 91 CrossRefGoogle Scholar
Belczynski, K., Klencki, J., Fields, C. E., et al. 2020, A&A, 636, 104 Google Scholar
Belczynski, K., Done, C., & Lasota, J.-P. 2021, arXiv:2111.09401 Google Scholar
Blondin, J. M. & Mezzacappa, A. 2007, Nature, 445, 58 CrossRefGoogle Scholar
Cromartie, H. T., Fonseca, E., Ransom, S. M., et al. 2020, Nature Astronomy, 4, 72 CrossRefGoogle Scholar
Demorest, P. B., Pennucci, T., Ransom, S. M., et al. 2010, Nature, 467, 1081 CrossRefGoogle Scholar
Duncan, R. C. & Thompson, C. 1992, ApJL, 392, L9.CrossRefGoogle Scholar
Farr, W. M., Sravan, N., Cantrell, A., et al. 2011, ApJ, 741, 103 CrossRefGoogle Scholar
Farr, W. M. & Chatziioannou, K. 2020, Research Notes of the American Astronomical Society, 4, 65 Google Scholar
Faucher-Giguère, C.-A. & Kaspi, V. M. 2006, ApJ, 643, 332 CrossRefGoogle Scholar
Fryer, C. L., Woosley, S. E., & Hartmann, D. H. 1999, ApJ, 526, 152.CrossRefGoogle Scholar
Fryer, C. L. 1999, ApJ, 522, 413 CrossRefGoogle Scholar
Fryer, C. L. & Heger, A. 2000, ApJ, 541, 1033 CrossRefGoogle Scholar
Fryer, C. L. & Kalogera, V. 2001, ApJ, 554, 548 CrossRefGoogle Scholar
Fryer, C. L. & Warren, M. S. 2004, ApJ, 601, 391 CrossRefGoogle Scholar
Fryer, C. L. & Heger, A. 2005, ApJ, 623, 302 CrossRefGoogle Scholar
Fryer, C. L. 2006, New Astronomy, 50, 492 CrossRefGoogle Scholar
Fryer, C. L., Belczynski, K., Wiktorowicz, G., et al. 2012, ApJ, 749, 91 CrossRefGoogle Scholar
Fryer, C. L., Andrews, S., Even, W., et al. 2018, ApJ, 856, 63 CrossRefGoogle Scholar
Fryer, C. L., Lloyd-Ronning, N., Wollaeger, R., et al. 2019, European Physical Journal A, 55, 132 CrossRefGoogle Scholar
Fryer, C. L., Karpov, P., & Livescu, D. 2021, Astronomy Reports, 65, 937 CrossRefGoogle Scholar
Fuller, J. & Ma, L. 2019, ApJL, 881, L1 CrossRefGoogle Scholar
Fuller, J., Piro, A. L., & Jermyn, A. S. 2019, MNRAS, 485, 3661 CrossRefGoogle Scholar
Grefenstette, B. W., Harrison, F. A., Boggs, S. E., et al. 2014, Nature, 506, 339 CrossRefGoogle Scholar
Grefenstette, B. W., Fryer, C. L., Harrison, F. A., et al. 2017, ApJ, 834, 19 CrossRefGoogle Scholar
Heger, A., Woosley, S. E., & Spruit, H. C. 2005, ApJ, 626, 350 CrossRefGoogle Scholar
Igoshev, A. P. & Popov, S. B. 2013, MNRAS, 432, 967 CrossRefGoogle Scholar
Kalogera, V., Sathyaprakash, B. S., Bailes, M., et al. 2021, arXiv:2111.06990 Google Scholar
Keane, E. F. & Kramer, M. 2008, MNRAS, 391, 2009 CrossRefGoogle Scholar
Keil, W., Janka, H.-T., & Mueller, E. 1996, ApJL, 473, L111 CrossRefGoogle Scholar
Lattimer, J. M. 2019, Universe, 5, 159 CrossRefGoogle Scholar
Mereghetti, S., Pons, J. A., & Melatos, A. 2015, Space Science Review, 191, 315 CrossRefGoogle Scholar
Miller, M. C. & Miller, J. M. 2015, Physics Reports, 548, 1.CrossRefGoogle Scholar
Mösta, P., Roberts, L. F., Halevi, G., et al. 2018, ApJ, 864, 171 CrossRefGoogle Scholar
Noutsos, A., Schnitzeler, D. H. F. M., Keane, E. F., et al. 2013, MNRAS, 430, 2281 CrossRefGoogle Scholar
Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4 CrossRefGoogle Scholar
Popov, S. B. & Turolla, R. 2012, Astrophysics and Space Sciences, 341, 457 CrossRefGoogle Scholar
Strang, L. C. & Melatos, A. 2019, MNRAS, 487, 5010 CrossRefGoogle Scholar
Thorsett, S. E. & Chakrabarty, D. 1999, ApJ, 512, 288 CrossRefGoogle Scholar
Woods, P. M. 2008, 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, 983, 227 Google Scholar
Woosley, S. E. 1993, ApJ, 405, 273.CrossRefGoogle Scholar