Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T19:18:19.719Z Has data issue: false hasContentIssue false

Collaborative visual analytics of radio surveys in the Big Data era

Published online by Cambridge University Press:  30 May 2017

Dany Vohl
Affiliation:
Centre for Astrophysics & Supercomputing, Swinburne University of Technology, 1 Alfred Street, Hawthorn 3122, Australia emails: [email protected], [email protected], [email protected], [email protected]
Christopher J. Fluke
Affiliation:
Centre for Astrophysics & Supercomputing, Swinburne University of Technology, 1 Alfred Street, Hawthorn 3122, Australia emails: [email protected], [email protected], [email protected], [email protected] Monash e-Research Centre, Monash University, 14 Alliance Lane, Clayton 3168, Australia email: [email protected]
Amr H. Hassan
Affiliation:
Centre for Astrophysics & Supercomputing, Swinburne University of Technology, 1 Alfred Street, Hawthorn 3122, Australia emails: [email protected], [email protected], [email protected], [email protected]
David G. Barnes
Affiliation:
Monash e-Research Centre, Monash University, 14 Alliance Lane, Clayton 3168, Australia email: [email protected] Faculty of Information Technology, Monash University, Clayton, Victoria, Australia
Virginia A. Kilborn
Affiliation:
Centre for Astrophysics & Supercomputing, Swinburne University of Technology, 1 Alfred Street, Hawthorn 3122, Australia emails: [email protected], [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radio survey datasets comprise an increasing number of individual observations stored as sets of multidimensional data. In large survey projects, astronomers commonly face limitations regarding: 1) interactive visual analytics of sufficiently large subsets of data; 2) synchronous and asynchronous collaboration; and 3) documentation of the discovery workflow. To support collaborative data inquiry, we present encube, a large-scale comparative visual analytics framework. encube can utilise advanced visualization environments such as the CAVE2 (a hybrid 2D and 3D virtual reality environment powered with a 100 Tflop/s GPU-based supercomputer and 84 million pixels) for collaborative analysis of large subsets of data from radio surveys. It can also run on standard desktops, providing a capable visual analytics experience across the display ecology. encube is composed of four primary units enabling compute-intensive processing, advanced visualisation, dynamic interaction, parallel data query, along with data management. Its modularity will make it simple to incorporate astronomical analysis packages and Virtual Observatory capabilities developed within our community. We discuss how encube builds a bridge between high-end display systems (such as CAVE2) and the classical desktop, preserving all traces of the work completed on either platform – allowing the research process to continue wherever you are.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., Greenfield, P., Droettboom, M., Bray, E., Aldcroft, T., Davis, M., Ginsburg, A., Price-Whelan, A. M., Kerzendorf, W. E., Conley, A., Crighton, N., Barbary, K., Muna, D., Ferguson, H., Grollier, F., Parikh, M. M., Nair, P. H., Unther, H. M., Deil, C., Woillez, J., Conseil, S., Kramer, R., Turner, J. E. H., Singer, L., Fox, R., Weaver, B. A., Zabalza, V., Edwards, Z. I., Azalee Bostroem, K., Burke, D. J., Casey, A. R., Crawford, S. M., Dencheva, N., Ely, J., Jenness, T., Labrie, K., Lim, P. L., Pierfederici, F., Pontzen, A., Ptak, A., Refsdal, B., Servillat, M., & Streicher, O. 2013, A&A Astronomy & Astrophysics, 558, A33 Google Scholar
Dowler, P., Rixon, G., & Tody, D. 2010, ArXiv e-prints, arXiv 1110.0497Google Scholar
Febretti, A., Nishimoto, A., Mateevitsi, V., Renambot, L., Johnson, A., & Leigh, J., 2014. Virtual Reality (VR), Proc. IEEE Conference, pp. 9–14.Google Scholar
Hassan, A. H., Fluke, C. J., Barnes, D. G., & Kilborn, V. A., 2013. MNRAS Monthly Notices of the Royal Astronomical Society, 463, 3 Google Scholar
Johnston, S., Taylor, R., Bailes, M., Bartel, N., Baugh, C., Bietenholz, M., Blake, C., Braun, R., Brown, J., Chatterjee, S., Darling, J., Deller, A., Dodson, R., Edwards, P., Ekers, R., Ellingsen, S., Feain, I., Gaensler, B., Haverkorn, M., Hobbs, G., Hopkins, A., Jackson, C., James, C., Joncas, G., Kaspi, V., Kilborn, V., Koribalski, B., Kothes, R., Landecker, T., Lenc, E., Lovell, J., Macquart, J.-P., Manchester, R., Matthews, D., McClure-Griffiths, N., Norris, R., Pen, U.-L., Phillips, C., Power, C., Protheroe, R., Sadler, E., Schmidt, B., Stairs, I., Staveley-Smith, L., Stil, J., Tingay, S., Tzioumis, A., Walker, M., Wall, J., & Wolleben, M. 2008, Experimental Astronomy, 22, pp. 151273 Google Scholar
Verheijen, M., Oosterloo, T., Heald, G., & van Cappellen, W. 2009, HI Surveys with APERTIF. Panoramic Radio Astronomy: Wide-field 1-2 GHz research on galaxy evolution, pp. 1–2.Google Scholar
Quinn, P., Axelrod, T., Bird, I., Dodson, R., Szalay, A., & Wicenec, A. 2015, ArXiv e-prints, arXiv 1501.05367Google Scholar
Taylor, M. B., Boch, T., & Taylor, J. 2015, A&C Astronomy and Computing, 11, pp. 8190 Google Scholar
Thomas, J. J. & Cook, K. A. 2006, IEEE Computer Graphics and Applications, 26, 1 Google Scholar
Vohl, D., Fluke, C. J., Hassan, A. H., & Barnes, D. G. 2015, in: Lorente, N. P. F. & Shortridge, K. (eds.) An interactive, comparative and quantitative 3D visualization system for large-scale spectral-cube surveys using CAVE2, Proc. ADASS XXV (San Francisco: ASP)Google Scholar
Vohl, D., Barnes, D. G., Fluke, C. J., Poudel, G., Georgiou-Karistianis, N., Hassan, A. H., Benovitski, Y., Wong, T. H., Kaluza, O., Nguyen, T. D., & Bonnington, C. P. 2016, Peer J Computer Science, doi: 10.7717/peerj-cs.88 Google Scholar