Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-21T19:40:57.042Z Has data issue: false hasContentIssue false

Cold H I in turbulent eddies and galactic spiral shocks

Published online by Cambridge University Press:  01 August 2006

Steven J. Gibson
Affiliation:
Arecibo Observatory, National Astronomy and Ionosphere Center, Arecibo, PR 00612, U.S.A.
A. Russell Taylor
Affiliation:
Dept. of Physics & Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
Jeroen M. Stil
Affiliation:
Dept. of Physics & Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
Christopher M. Brunt
Affiliation:
School of Physics, University of Exeter, Exeter, United KingdomEX4 4QL
Dain W. Kavars
Affiliation:
Department of Astronomy, University of Minnesota, Minneapolis, MN 55455, U.S.A.
John M. Dickey
Affiliation:
Department of Astronomy, University of Minnesota, Minneapolis, MN 55455, U.S.A. School of Mathematics and Physics, University of Tasmania, Hobart, TAS 7001, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

H I 21cm-line self-absorption (HISA) reveals the shape and distribution of cold atomic clouds in the Galactic disk. Many of these clouds lack corresponding CO emission, despite being colder than purely atomic gas in equilibrium models. HISA requires background line emission at the same velocity, hence mechanisms that can produce such backgrounds. Weak, small-scale, and widespread absorption is likely to arise from turbulent eddies, while strong, large-scale absorption appears organized in cloud complexes along spiral arm shocks. In the latter, the gas may be evolving from an atomic to a molecular state prior to star formation, which would account for the incomplete HISA-CO agreement.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Dame, T. M., Hartmann, D. & Thaddeus, P. 2001, ApJ 547, 792CrossRefGoogle Scholar
Gibson, S. J., Taylor, A. R., Dewdney, P.E. & Higgs, L. A. 2000, ApJ 540, 851CrossRefGoogle Scholar
Gibson, S. J., Taylor, A. R., Stil, J. M., Brunt, C. M., Kavars, D. W. & Dickey, J. M. 2006, in preparationGoogle Scholar
Gibson, S. J., Taylor, A. R., Higgs, L.A., Brunt, C. M. & Dewdney, P. E. 2005, ApJ 626, 195CrossRefGoogle Scholar
Heyer, M. H., Brunt, C., Snell, R. L., Howe, J. E., Schloerb, F. P. & Carpenter, J. M. 1998, ApJS 115, 241CrossRefGoogle Scholar
Klaassen, P. D., Plume, R., Gibson, S. J., Taylor, A. R. & Brunt, C. M. 2005, ApJ 631, 1001CrossRefGoogle Scholar
Roberts, W. W. 1972, ApJ 173, 259CrossRefGoogle Scholar
Stil, J. M., Taylor, A. R., Dickey, J. M., Kavars, D. A., Martin, P. G., Rothwell, T. A., Boothroyd, A., Lockman, F. J. & McClure-Griffiths, N. M. 2006, AJ 132, 1158CrossRefGoogle Scholar
Taylor, A. R., et al. 2003, AJ 125, 3145CrossRefGoogle Scholar
Vźquez-Semadeni, E., Ryu, D., Passot, T., Gonźlez, R. F. & Gazol, A. 2006, ApJ 643, 245CrossRefGoogle Scholar