Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T06:29:22.549Z Has data issue: false hasContentIssue false

The cold gas supply through cosmic time: insights on the galaxy assembly at early epochs

Published online by Cambridge University Press:  09 June 2023

Manuel Aravena*
Affiliation:
Núcleo de Astronomía, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, 8370191 Santiago, Chile email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Remarkable progress has been made in the last few years in understanding the global properties of galaxies and how they evolve through cosmic time. Major focus has been given to studies of how the availability of molecular gas regulates star-forming activity and galaxy growth, the eventual quenching of star formation, and how these mechanisms evolve through cosmic time. Most of these advances have been made thanks to ALMA and the upgraded capabilities of NOEMA. In this contribution, I briey review the latest constraints on the molecular gas content based on dierent tracers of the interstellar medium (ISM; dust continuum and CO, [CI] and [CII] line emission), including recent determinations of the molecular gas fraction, gas depletion timescales, and molecular gas cosmic density provided by the recent ALMA programs out to z ∼ 7. Finally, I concentrate on recent and ongoing studies aiming to spatially and kinematically resolve the cold ISM and star formation activity down to kpc scales in galaxies out to z ∼ 6 – 7, which represent an unprecedented view of the galaxy assembly and feedback processes in the early universe.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Aravena, M., Spilker, J. S., Bethermin, M., et al. 2016, MNRAS, 457, 4406 10.1093/mnras/stw275CrossRefGoogle Scholar
Birkin, J. E., Weiss, A., Wardlow, J. L., et al. 2021, MNRAS, 501, 3926 10.1093/mnras/staa3862CrossRefGoogle Scholar
Bakx, T. J. L. C., Tamura, Y., Hashimoto, T, et al. 2020, MNRAS, 493, 4294 10.1093/mnras/staa509CrossRefGoogle Scholar
Barro, G., Kriek, M., Pérez-González, P. G., et al. 2016, ApJ, 827, 32 10.3847/2041-8205/827/2/L32CrossRefGoogle Scholar
Bolatto, A., Wolfire, M., Leroy, A. et al. 2013, ARA&A, 51, 207 Google Scholar
Bothwell, M. S., Smail, I., Chapman, S. C., et al. 2013, MNRAS, 429, 3047 10.1093/mnras/sts562CrossRefGoogle Scholar
Bouwens, R. J., Smit, R., Schouws, S., et al. 2022, ApJ, 931, 160 10.3847/1538-4357/ac5a4aCrossRefGoogle Scholar
Capak, P. L., Carilli, C. L., Jones, G., et al. 2015, Nature, 522, 455 10.1038/nature14500CrossRefGoogle Scholar
Cañameras, R., Yang, C., Nesvadba, N. P. H., et al. 2018, A&A, 620, 61 Google Scholar
Casey, C. M., Narayanan, D., Cooray, A., et al. 2014, PhR, 541, 45 Google Scholar
Chen, C. C., Harrison, C. M., Smail, I. et al. 2020, A&A, 635, 119 Google Scholar
Cochrane, R. K., Best, P. N., Smail, I. et al. 2021, MNRAS, 503, 2622 10.1093/mnras/stab467CrossRefGoogle Scholar
Decarli, R., Aravena, M., Boogaard, L. et al. 2020, ApJ, 902, 110 10.3847/1538-4357/abaa3bCrossRefGoogle Scholar
Dessauges-Zavadsky, M., Richard, J., Combes, F. et al. 2019, NatAs, 3, 1115 Google Scholar
Dunlop, J. S., McLure, R. J., Biggs, A. D. et al. 2017, MNRAS, 466, 861 10.1093/mnras/stw3088CrossRefGoogle Scholar
Elbaz, D., Daddi, E., Le Borgne, D., et al. 2007, A&A, 468, 33 Google Scholar
Franco, M., Elbaz, D., Béthermin, M. et al. 2018, A&A, 620, 152 Google Scholar
Fudamoto, Y., Smit, R., Bowler, R. A. A. et al. 2022, ApJ, 934,14410.3847/1538-4357/ac7a47CrossRefGoogle Scholar
Fujimoto, S., Silverman, J. D., Béthermin, M. et al. 2020, ApJ, 900, 1 10.3847/1538-4357/ab94b3CrossRefGoogle Scholar
Fujimoto, S., Oguri, M., Brammer, G. et al. 2021, ApJ, 911, 99 10.3847/1538-4357/abd7ecCrossRefGoogle Scholar
Genzel, R., Burkert, A., Bouché, N. et al. 2008, ApJ, 687, 59 10.1086/591840CrossRefGoogle Scholar
Ginolfi, M., Jones, G. C., Bethermin, M. et al. 2020, A&A, 643, 7 Google Scholar
Gobat, R., Daddi, E., Magdis, G., et al. 2018, NatAs, 2, 239 Google Scholar
González-López, J., Decarli, R., Pavesi, R. et al. 2019, ApJ accepted, arxiv:1903.09161Google Scholar
Harrington, K. C., Yun, M. S., Magnelli, B. et al. 2018, MNRAS, 474, 3866 10.1093/mnras/stx3043CrossRefGoogle Scholar
Heintz, K. E., Watson, D., Oesch, P. et al. 2021, ApJ, 922, 147 10.3847/1538-4357/ac2231CrossRefGoogle Scholar
Hatsukade, B., Kohno, K., Umehata, H. et al. 2016, PASJ, 68, 36 10.1093/pasj/psw026CrossRefGoogle Scholar
Hatsukade, B., Kohno, K., Yamaguchi, Y. et al. 2018, PASJ, 70, 105 10.1093/pasj/psy104CrossRefGoogle Scholar
Herrera-Camus, R., Forster-Schreiber, N., Price, S. H. et al. 2022, A&A, 665, 8 Google Scholar
Hodge, J. A., Smail, I., Walter, F., et al. 2019, ApJ, 876, 130 10.3847/1538-4357/ab1846CrossRefGoogle Scholar
Hughes, D. H., Serjeant, S., Dunlop, J., et al. 1998, Nature, 394, 241 10.1038/28328CrossRefGoogle Scholar
Jones, G. C., Bethermin, M., Fudamoto, Y. 2019, MNRAS, 491, 18 10.1093/mnrasl/slz154CrossRefGoogle Scholar
Lambert, T. S., Posses, A., Aravena, M. et al. 2022, ArXiv:2210.10023 Google Scholar
Le Fèvre, O., Béthermin, M., Faisst, A., et al. 2020, A&A, 643, A1 Google Scholar
Liu, D., Lang, P., Magnelli, B. et al. 2019, ApJS, 244, 40 10.3847/1538-4365/ab42daCrossRefGoogle Scholar
Madau, P. & Dickinson, M. 2004, ARA&A, 52, 415 Google Scholar
Posses, A. C., Aravena, M., González-López, J. et al. 2022, ArXiv:2206.13770 Google Scholar
Sharon, C. E., Riechers, D. A., Hodge, J., et al. 2016, ApJ, 827, 18 10.3847/0004-637X/827/1/18CrossRefGoogle Scholar
Scoville, N., Aussel, H., Sheth, K. et al. 2014, ApJ, 783, 84 10.1088/0004-637X/783/2/84CrossRefGoogle Scholar
Scoville, N., Lee, N., Vanden Bout, P., et al. 2015, ApJ, 837, 150 10.3847/1538-4357/aa61a0CrossRefGoogle Scholar
Simpson, J. M., Smail, I., Swinbank, A. M. et al. 2017, ApJ, 839, 58 10.3847/1538-4357/aa65d0CrossRefGoogle Scholar
Smail, I., Ivison, R. J., & Blain, A. W. 1997, ApJL, 490, 5 10.1086/311017CrossRefGoogle Scholar
Smit, R., Bouwens, R. J., Carniani, S. et al. 2018, Nature, 553, 178 10.1038/nature24631CrossRefGoogle Scholar
Soto, E., de Mello, D. F., Rafelski, M. et al. 2017, ApJ, 837, 6 10.3847/1538-4357/aa5da3CrossRefGoogle Scholar
Spilker, J. S., Bezanson, R., Weiner, B. J. et al. 2019, ApJ, 883, 81 10.3847/1538-4357/ab3804CrossRefGoogle Scholar
Spilker, J. S., Suess, K. A., Setton, D. et al. 2022, ApJ, 936, 11 10.3847/2041-8213/ac75eaCrossRefGoogle Scholar
Tadaki, K., Belli, S., Burkert, A., et al. 2020, ApJ, 901, 74 10.3847/1538-4357/abaf4aCrossRefGoogle Scholar
Tacconi, L. J., Genzel, R., Saintonge, A., et al. 2018, ApJ, 853, 179 10.3847/1538-4357/aaa4b4CrossRefGoogle Scholar
Tacconi, L. J., Genzel, R., Sternberg, A. 2020, ARA&A, 58, 157 Google Scholar
Umehata, H. Hatsukade, B., Smail, I. et al. 2018, PASJ, 70, 65Google Scholar
Valentino, F., Magdis, G. E., Daddi, E. et al. 2018, ApJ, 869, 27 10.3847/1538-4357/aaeb88CrossRefGoogle Scholar
Walter, F., Decarli, R., Aravena, M. et al. 2016, ApJ, 833, 67 10.3847/1538-4357/833/1/67CrossRefGoogle Scholar
Walter, F., Carilli, C. L., Neeleman, M. et al. 2020, ApJ, 902, 111 10.3847/1538-4357/abb82eCrossRefGoogle Scholar
Wardlow, J. L., Simpson, J. M., Smail, I. et al. 2018, MNRAS, 479, 3879 10.1093/mnras/sty1526CrossRefGoogle Scholar
Whitaker, K. E., Williams, C. C., Mowla, L. et al. 2021, Nature, 579, 485 10.1038/s41586-021-03806-7CrossRefGoogle Scholar
Williams, C. C., Spilker, J., Whitaker, K. E. et al. 2021, ApJ, 908, 54 10.3847/1538-4357/abcbf6CrossRefGoogle Scholar
Yang, C., Omont, A., Beelen, A. et al. 2017, A&A, 608, 144 Google Scholar
Zanella, A., Daddi, E., Magdis, G. et al. 2018, MNRAS, 481, 2 10.1093/mnras/sty2394CrossRefGoogle Scholar