Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T00:30:29.531Z Has data issue: false hasContentIssue false

Cold Gas in Outflow: Evidence for Delayed Positive AGN Feedback

Published online by Cambridge University Press:  20 January 2023

Yu Qiu*
Affiliation:
Kavli Institute for Astronomy and Astrophysics, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Multiphase outflows driven by active galactic nuclei (AGN) have a profound impact on the evolution of their host galaxies. The effects of AGN feedback are especially prominent in the brightest cluster galaxies (BCGs) of cool-core clusters, where there is a concentration of gas in all phases, ranging from cold molecular gas to hot, >107 K ionized plasma. In this proceeding I describe recent simulation efforts to understand the formation and evolution of the 10-kpc-scale Hα-emitting filaments driven by AGN activities. Combined with observed star formation regions co-spatial with the filaments, this feedback mechanism can directly contribute to the growth of the central galaxy, albeit delayed by the characteristic radiative cooling timescale, ∼10 Myr, of the outflowing plasma.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Brzan, L., Rafferty, D. A., McNamara, B. R., Wise, M. W., & Nulsen, P. E. J. 2004, A Systematic Study of Radio-Induced X-ray Cavities in Clusters, Groups, and Galaxies. The Astrophysical Journal, 607(2), 800809.CrossRefGoogle Scholar
Bryan, G. L., Norman, M. L., O’Shea, B. W., Abel, T., Wise, J. H., Turk, M. J., Reynolds, D. R., Collins, D. C., Wang, P., Skillman, S. W., Smith, B., Harkness, R. P., Bordner, J., Kim, J.-H., Kuhlen, M., Xu, H., Goldbaum, N., Hummels, C., Kritsuk, A. G., Tasker, E., Skory, S., Simpson, C. M., Hahn, O., Oishi, J. S., So, G. C., Zhao, F., Cen, R., & Li, Y. 2014, Enzo: An Adaptive Mesh Refinement Code for Astrophysics. The Astrophysical Journal Supplement Series, 211(2), 19.Google Scholar
Canning, R. E., Ryon, J. E., Gallagher, I. S., Kotulla, R., O’Connell, R. W., Fabian, A. C., Johnstone, R. M., Conselice, C. J., Hicks, A., Rosario, D., & Wyse, R. F. 2014, Filamentary Star Formation in NGC 1275. Monthly Notices of the Royal Astronomical Society, 444(1), 336349.CrossRefGoogle Scholar
Conselice, C. J., Gallagher, J. S., & Wyse, R. F. G. 2001, On the Nature of the NGC 1275 System. The Astronomical Journal, 122(5), 22812300.CrossRefGoogle Scholar
Fabian, A. C. 1994, Cooling Flows in Clusters of Galaxies. Annual Review of Astronomy and Astrophysics, 32(1), 277318.CrossRefGoogle Scholar
Fabian, A. C., Johnstone, R. M., Sanders, J. S., Conselice, C. J., Crawford, C. S., Gallagher, J. S., & Zweibel, E. 2008, Magnetic Support of the Optical Emission Line Filaments in NGC 1275. Nature, 454(7207), 968970.CrossRefGoogle ScholarPubMed
Gendron-Marsolais, M., Hlavacek-Larrondo, J., Martin, T. B., Drissen, L., McDonald, M., Fabian, A. C., Edge, A. C., Hamer, S. L., McNamara, B., & Morrison, G. 2018, Revealing the Velocity Structure of the Filamentary Nebula in NGC 1275 in its Entirety. Monthly Notices of the Royal Astronomical Society: Letters, 479(1), L28L33.Google Scholar
McDonald, M., Gaspari, M., McNamara, B. R., & Tremblay, G. R. 2018, Revisiting the Cooling Flow Problem in Galaxies, Groups, and Clusters of Galaxies. The Astrophysical Journal, 858(1), 45.CrossRefGoogle Scholar
McDonald, M., Veilleux, S., & Rupke, D. S. N. 2012, Optical Spectroscopy of Hα Filaments in Cool Core Clusters: Kinematics, Reddening, and Sources of Ionization. The Astrophysical Journal, 746(2), 153.CrossRefGoogle Scholar
McNamara, B. & Nulsen, P. 2007, Heating Hot Atmospheres with Active Galactic Nuclei. Annual Review of Astronomy and Astrophysics, 45(1), 117175.CrossRefGoogle Scholar
Qiu, Y., Bogdanović, T., Li, Y., & McDonald, M. 2019a Using Hα Filaments to Probe Active Galactic Nuclei Feedback in Galaxy Clusters. The Astrophysical Journal Letters, 872a(1), L11.CrossRefGoogle Scholar
Qiu, Y., Bogdanović, T., Li, Y., McDonald, M., & McNamara, B. R. 2020, The Formation of Dusty Cold Gas Filaments from Galaxy Cluster Simulations. Nature Astronomy,.Google Scholar
Qiu, Y., Bogdanović, T., Li, Y., Park, K., & Wise, J. H. 2019,b The Interplay of Kinetic and Radiative Feedback in Galaxy Clusters. The Astrophysical Journal, 877b(1), 47.CrossRefGoogle Scholar
Qiu, Y., Hu, H., Inayoshi, K., Ho, L. C., Bogdanović, T., & McNamara, B. R. 2021,a Dynamics and Morphology of Cold Gas in Fast, Radiatively Cooling Outflows: Constraining AGN Energetics with Horseshoes. The Astrophysical Journal Letters, 917a(1), L7.CrossRefGoogle Scholar
Qiu, Y., McNamara, B. R., Bogdanović, T., Inayoshi, K., & Ho, L. C. 2021,b On the Mass Loading of AGN-driven Outflows in Elliptical Galaxies and Clusters. The Astrophysical Journal, 923b(2), 256.CrossRefGoogle Scholar
Salomé, P., Combes, F., Revaz, Y., Downes, D., Edge, A. C., & Fabian, A. C. 2011, A Very Extended Molecular Web around NGC 1275. Astronomy & Astrophysics, 531(5), A85.CrossRefGoogle Scholar
Salomé, P., Combes, F., Revaz, Y., Edge, A. C., Hatch, N. A., Fabian, A. C., & Johnstone, R. M. 2008, Cold gas in the Perseus cluster core: excitation of molecular gas in filaments. Astronomy & Astrophysics, 484(2), 317325.Google Scholar
Wise, J. H. & Abel, T. 2011, Enzo+Moray: Radiation Hydrodynamics Adaptive Mesh Refinement Simulations with Adaptive Ray Tracing. Monthly Notices of the Royal Astronomical Society, 414(4), 34583491.Google Scholar