Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T17:37:45.427Z Has data issue: false hasContentIssue false

Close pairs: keys to comprehension of star cluster evolution

Published online by Cambridge University Press:  18 January 2010

Dany Vanbeveren*
Affiliation:
Astrophysical Institute, Vrije Universiteit Brussel, Belgium email: [email protected] GroepT Leuven Engineering College, Association KU Leuven, Belgium email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this review I first summarize why binaries are key objects in the study of stellar populations, to understand the evolution of star clusters and galaxies, and thus to understand the universe. I then focus on four specific topics:

  1. (i) the formation (through binaries) and evolution of very massive stars in dense clusters and the importance of stellar-wind mass loss. I discuss preliminary computations of wind mass-loss rates of very massive stars performed with the Munich hydrodynamical code and the influence of these new rates on the possible formation of an intermediate-mass black hole in the cluster MGG 11 in M82;

  2. (ii) the evolution of intermediate-mass binaries in a starburst with special emphasis on the variation of the supernova (SN) Ia rate (i.e., on the delayed time distribution of SNe Ia). A comparison with SN Ia rates in elliptical galaxies may provide important clues to SN Ia models as well as to the evolution of SN Ia progenitors;

  3. (iii) the evolution of double-neutron-star mergers in a starburst (i.e., the delayed time distribution of these mergers) and what this tells us about the suggestion that these mergers may be important production sites of r-process elements;

  4. (iv) the possible effect of massive binaries on the self-enrichment of globular clusters.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Belczynski, K., Kalogera, V., Rasio, F. A., Taam, R. E., Zezas, A., Bulik, T., Maccarone, T. J., & Ivanova, N. 2008, ApJS, 174, 223CrossRefGoogle Scholar
Belczynski, K., Bulik, T., & Kalogera, V. 2002, ApJ, 571, 147CrossRefGoogle Scholar
Belkus, H. 2008, PhD Thesis, Vrije Universiteit, BrusselsGoogle Scholar
Belkus, H., Van Bever, J., & Vanbeveren, D. 2007, ApJ, 659, 1576CrossRefGoogle Scholar
Belkus, H., Van Bever, J., Vanbeveren, D., & Van Rensbergen, W. 2003, A&A, 400, 429Google Scholar
Blaauw, A. 1967, Bull. Astr. Inst. Netherlands, 15, 265Google Scholar
Brinchmann, J., Kunth, D., & Durret, F. 2008, A&A, 485, 657Google Scholar
Canon, R., Eggleton, P. P., Zytkow, A. N., & Podsiadlowski, P. 1992, ApJ, 386, 206CrossRefGoogle Scholar
Cottrell, P. L. & Da Costa, G. S. 1981, ApJ, 245, 79CrossRefGoogle Scholar
De Donder, E. & Vanbeveren, D. 2003, NewA, 9, 1CrossRefGoogle Scholar
De Donder, E. & Vanbeveren, D. 2004, NewAR, 48, 861CrossRefGoogle Scholar
De Donder, E. & Vanbeveren, D. 1998, A&A, 333, 557Google Scholar
De Donder, E.Vanbeveren, D., & Van Bever, J. 1997, A&A, 318, 812Google Scholar
Decressin, T., Charbonnel, C., Siess, L., Palacios, A., Meynet, G., & Georgy, C. 2009, A&A, 505, 727Google Scholar
Decressin, T., Meynet, G., Charbonnel, C., Prantzos, N., & Ekström, S. 2007, A&A, 464, 1029Google Scholar
Dessart, L., Ott, C.D., Burrows, A., Rosswog, S., & Livne, E. 2009, ApJ, 690, 1681CrossRefGoogle Scholar
Detmers, R. G., Langer, N., Podsiadlowski, P., & Izzard, R. G. 2008, A&A, 484, 831Google Scholar
Dewi, J. D. M. & Pols, O. R. 2003, MNRAS, 344, 629CrossRefGoogle Scholar
Gies, D. R. 1987, ApJS, 64, 545CrossRefGoogle Scholar
Hachisu, I., Kato, M., & Nomoto, K. 2008, ApJ, 679, 1390CrossRefGoogle Scholar
Han, Z. & Podsiadlowski, P. 2004, MNRAS, 350, 1301CrossRefGoogle Scholar
Han, Z., Podsiadlowski, P., & Lynas–Gray, A. E. 2007, MNRAS, 380, 1098CrossRefGoogle Scholar
Hunter, I., Lennon, D. J., Dufton, P. L., Trundle, C., Simón–Díaz, S., Smartt, S. J., Ryans, R. S. I., & Evans, C. J. 2008, A&A, 479, 541Google Scholar
Hutchings, J. B. 1975, ApJ, 200, 122CrossRefGoogle Scholar
Ivanova, N., Belczynski, K., Kalogera, V., Rasio, F. A., & Taam, R. E. 2003, ApJ, 592, 475CrossRefGoogle Scholar
Kouwenhoven, M. B. N. 2006, PhD Thesis, University of AmsterdamGoogle Scholar
Kudritzki, R. P. 2002, ApJ, 577, 389CrossRefGoogle Scholar
Lada, C. J., Margulis, M., & Dearborn, D. 1984, ApJ, 285, 141CrossRefGoogle Scholar
Langer, N., Cantiello, M., Yoon, S.-C., Hunter, I., Brott, I., Lennon, D., de Mink, S., & Verheijdt, M. 2008, Proc. IAU Symp. No. 250, 167CrossRefGoogle Scholar
Lyne, A. G., et al. 2004, Science, 303, 1153CrossRefGoogle Scholar
Mason, B. D., Hartkopf, W. I., Gies, D. R., Henry, T. J., & Helsel, J. W. 2009, AJ, 137, 3358CrossRefGoogle Scholar
Matthews, G. J., Bazan, G., & Cowan, J. J. 1992, ApJ, 391, 719CrossRefGoogle Scholar
McCrady, N., Gilbert, A. M., & Graham, J. R. 2003, ApJ., 596, 240CrossRefGoogle Scholar
Mennekens, N., Vanbeveren, D., De Greve, J. P., & De Donder, E. 2009, A&A, submittedGoogle Scholar
Mokiem, M. R., et al. 2006, A&A 456, 1131Google Scholar
O'Shaughnessy, R., Kalogera, V., & Belczynski, K. 2009, ApJ, submitted (arXiv:0908.3635)Google Scholar
Piersanti, L., Gagliardi, S., Iben, I. Jr., & Tornambe, A. 2003, ApJ, 583, 885CrossRefGoogle Scholar
Pols, O. R., Izzard, R. G., Lugaro, M., & de Mink, S. E. 2009, Proc. IAU Symp. No. 252, 383CrossRefGoogle Scholar
Pols, O. R. & Marinus, M. 1994, A&A, 288, 475Google Scholar
Portegies Zwart, S.F., Baumgardt, H., Hut, P., Makino, J., & McMillan, S. L. W. 2004, Nature, 428, 724CrossRefGoogle Scholar
Qian, Y.-Z. & Woosley, S. E. 1996, ApJ, 471, 331CrossRefGoogle Scholar
Rosswog, S., Freiburghaus, C., Thielemann, F.-K., Davies, M. B. 2001, in: Wheeler, J. C. & Martel, H., 20th Texas Symp. on relativistic astrophysics, AIP Conf. Proc. No. 586, p. 343Google Scholar
Ruiter, A., Belczynski, K., & Fryer, C. 2009, ApJ, 699, 2026CrossRefGoogle Scholar
Saio, H. & Nomoto, K. 1998, ApJ, 500, 388CrossRefGoogle Scholar
Suzuki, T. K., Nakasato, N., Baumgardt, H., Ibukiyama, A., Makino, J., & Ebisuzaki, T. 2007, ApJ, 668, 435CrossRefGoogle Scholar
Thorne, K. S. & Zytkow, A. N. 1977, ApJ, 212, 832CrossRefGoogle Scholar
Totani, T., Morokuma, T., Oda, T., Doi, M., & Yasuda, N. 2008, PASJ, 60, 1327CrossRefGoogle Scholar
Van Bever, J. & Vanbeveren, D. 1998, A&A, 334, 21Google Scholar
Van Bever, J. & Vanbeveren, D. 2000, A&A, 358, 462Google Scholar
Van Bever, J. & Vanbeveren, D. 2003, A&A, 400, 63Google Scholar
Vanbeveren, D. 2007, in: St-Louis, N. & Moffat, A. F. J., Massive Stars in Interacting Binaries, ASP Conf. Ser., 367, p. 13, San Francisco: Astron. Soc. Pac.Google Scholar
Vanbeveren, D. 2009, NewAR, 53, 27CrossRefGoogle Scholar
Vanbeveren, D., Belkus, H., Van Bever, J., & Mennekens, N. 2009, in: Pérez, E., de Grijs, R. & González Delgada, R. M., Young massive star clusters – Initial conditions and environments, ApSS, 324, 271Google Scholar
Vanbeveren, D. & De Donder, E. 2006, NewA, 12, 95CrossRefGoogle Scholar
Vanbeveren, D. & De Loore, C. 1994, A&A, 290, 129Google Scholar
Ventura, P. & D'Antona, F. 2009, A&A, 499, 835Google Scholar
Webbink, R. 1984, ApJ, 277, 355CrossRefGoogle Scholar
Yungelson, L. & Livio, M. 2000, ApJ, 528, 108CrossRefGoogle Scholar
Zinnecker, H. & Yorke, H. W. 2007, ARA&A, 45, 481Google Scholar