Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T13:14:34.094Z Has data issue: false hasContentIssue false

Classical Observations of Visual Binary and Multiple Stars

Published online by Cambridge University Press:  12 July 2007

Brian D. Mason*
Affiliation:
Astrometry Department, U.S. Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Changes in the double star database are highlighted, describing various methods of observation (both historically and those of the past few years) and their effectiveness in different regimes of separation space. The various niches for wide- and narrow-field work as they apply to double and multiple stars are examined and the different types of information which each can provide are described. Despite the significant growth of the double star database, much can still be done, such as finding lost pairs, filling in missing parameters so that observing programs can select all stars appropriate to their capabilities, or providing at least gross kinematic descriptions. After more than 20 years of successful work, speckle interferometry and conventional CCD astrometry have replaced filar micrometry and photography as preferred classical techniques. Indeed, most work in filar micrometry is now being done by amateurs. Work on pairs described as neglected in the last major WDS data release (2001) is given as a specific example. Finally, the continued need to publish data in classical double star parameters is also discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Anderson, J.A. 1920, ApJ 51, 263 CrossRefGoogle Scholar
Arnold, D. 2006, JDSO 2, 163 Google Scholar
Balega, I.I., Balega, Y.Y., Hofmann, K.-H., Malogolovets, E.V., Schertl, D., Shkhagosheva, Z.U., & Weigelt, G. 2006, A&A 448, 703 Google Scholar
Balega, I.I., Balega, Y.Y., Hofmann, K.-H., Pluzhnik, E.A., Schertl, D., Shkhagosheva, Z.U., & Weigelt, G. 2005, A&A 433, 591 Google Scholar
Boden, A.F., Koresko, C.D., van Belle, G.T., Colavita, M.M., Dumont, P.J., Gubler, J., Kulkarni, S.R., Lane, B.F., Mobley, D., Shao, M. et al. , 1999, ApJ 515, 356 CrossRefGoogle Scholar
Burnham, S.W. 1894, Publ. Lick Obs. 2 Google Scholar
Daley, J.A. 2005, JDSO 2, 44 Google Scholar
Davis, J., Mendez, A., Seneta, E.B., Tango, W.J., Booth, A.J., O'Byrne, J.W., Thorvaldson, E.D., Ausseloos, M., Aerts, C., & Uytterhoeven, K. 2005, MNRAS 356, 1362 CrossRefGoogle Scholar
Fabricius, C., Høg, E., Makarov, V.V., Mason, B.D., Wycoff, G.L., & Urban, S.E. 2002, A&A 384, 180 Google Scholar
Girard, T.M., Wu, H., Lee, J.T., Dyson, S.E., van Altena, W.F., Horch, E.P., Gilliland, R.L., Schaefer, K.G., Bond, H.E., Ftaclas, C. et al. 2001, AJ 119, 2428 CrossRefGoogle Scholar
Heintz, W.D. 1996, AJ 111, 408 CrossRefGoogle Scholar
Hummel, C.A., Armstrong, J.T., Quirrenbach, A., Buscher, D.F., Mozurkewich, D., Elias, N.M. II & Wilson, R.E. 1994, AJ 107, 1859 CrossRefGoogle Scholar
Hummel, C.A., Carquillat, J.-M., Ginestet, N., Griffin, R.F., Boden, A.F., Hajian, A.R., Mozurkewich, D., & Nordgren, T.E. 2001, AJ 121, 1623 CrossRefGoogle Scholar
Kaplan, G.H. & Snell, S.C. 2001, BAAS 33, 1493 Google Scholar
Lippincott, L.S. 1962, PASP 74, 5 CrossRefGoogle Scholar
Mason, B.D., Hartkopf, W.I., Holdenried, E.R., & Rafferty, T.J. 2001, AJ 121, 3224 CrossRefGoogle Scholar
Mason, B.D., Hartkopf, W.I., Wycoff, G.L., & Rafferty, T.J. 2006, AJ 131, 2687 CrossRefGoogle Scholar
McAlister, H.A. 1981, AJ 86, 795 CrossRefGoogle Scholar
Merrill, P.W. 1922, ApJ 56, 40 CrossRefGoogle Scholar
Pourbaix, D. 2000, A&AS 145, 215 Google Scholar
Struve, F.G.W. 1837, Mensurae Micrometricae Petropoli Google Scholar
Wycoff, G.L., Mason, B.D., & Urban, S.E. 2006, AJ 132, 50 CrossRefGoogle Scholar