Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T13:42:14.876Z Has data issue: false hasContentIssue false

Classical Cepheids, what else?

Published online by Cambridge University Press:  26 February 2013

G. Bono
Affiliation:
Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy email: [email protected] INAF–OAR, via Frascati 33, 00040 Monte Porzio Catone, Italy
L. Inno
Affiliation:
Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy email: [email protected] ESO, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany
N. Matsunaga
Affiliation:
Department of Astronomy, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
K. Genovali
Affiliation:
Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy email: [email protected]
B. Lemasle
Affiliation:
Sterrenkundig Instituut ‘Anton Pannekoek’, University of Amsterdam, Science Park 904, P.O. Box 94249, 1090 GE Amsterdam, The Netherlands
F. Primas
Affiliation:
ESO, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany
M. Romaniello
Affiliation:
ESO, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present new and independent estimates of the distances to the Magellanic Clouds (MCs) using near-infrared (NIR) and optical–NIR period–Wesenheit (PW) relations. The slopes of the PW relations are, within the dispersion, linear over the entire period range and independent of metal content. The absolute zero points were fixed using Galactic Cepheids with distances based on the infrared surface-brightness method. The true distance modulus we found for the Large Magellanic Cloud—(m − M)0 = 18.48 ± 0.01 ± 0.10 mag—and the Small Magellanic Cloud—(m − M)0 = 18.94 ± 0.01 ± 0.10 mag—agree quite well with similar distance determinations based on robust distance indicators. We also briefly discuss the evolutionary and pulsation properties of MC Cepheids.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Alcock, C., Allsman, R. A., Alves, D. R., et al. 2000, AJ, 117, 920CrossRefGoogle Scholar
Alcock, C., Allsman, R. A., Alves, D. R., et al. 2000, ApJ, 542, 281Google Scholar
Alibert, Y., Baraffe, I., Hauschildt, P., et al. 1999, A&A, 344, 551Google Scholar
Baade, W. 1948, PASP, 60, 230CrossRefGoogle Scholar
Baraffe, I. & Alibert, Y. 2001, A&A, 371, 592Google Scholar
Barnes, T. G. & Evans, D. S. 1976, MNRAS, 174, 489Google Scholar
Becker, S. A., Iben, I. Jr., & Tuggle, R. S. 1977, ApJ, 218, 633CrossRefGoogle Scholar
Benedict, G. F., McArthur, B. E., Feast, M. W., et al. 2007, AJ, 133, 1810 (B07)Google Scholar
Bono, G. & Marconi, M. 1999, in: New Views of the Magellanic Clouds (Chu, Y.-H., Suntzeff, N., Hesser, J., & Bohlender, D., eds), IAU Symp. Ser., 190, 527Google Scholar
Bono, G. & Stellingwerf, R. F. 1993, Mem. Soc. Astron. It., 64, 559Google Scholar
Bono, G., Castellani, V., & Marconi, M. 2000, ApJ, 529, 293Google Scholar
Bono, G., Caputo, F., Marconi, M., et al. 2010, ApJ, 715, 277Google Scholar
Buchler, J. R., Moskalik, P., & Kovacs, G. 1990, ApJ, 351, 617Google Scholar
Butler, C. J. 1978, A&AS, 32, 83Google Scholar
Caldwell, J. A. R. & Coulson, I. M. 1987, AJ, 93, 1090Google Scholar
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, in: Interstellar Dust (Allamandola, L. J., & Tielens, A. G. G. M., eds), IAU Symp. Ser., 135, 5Google Scholar
Cassisi, S. & Salaris, M. 2011, ApJ, 728, L43Google Scholar
Castor, J. I. 1971, ApJ, 166, 109Google Scholar
Christy, R. F. 1968, QJRAS, 9, 13Google Scholar
Christy, R. F. 1971, Astrophys. Space Sci. Libr., 23, 136Google Scholar
Christy, R. F. 1975, NASA Special Publ., 383, 85Google Scholar
Cirasuolo, M., Afonso, J., Bender, R., et al. 2011, ESO Messenger, 145, 11Google Scholar
Cox, A. N. 1979, ApJ, 229, 212CrossRefGoogle Scholar
Dall'Ora, M., Kinemuchi, K., Ripepi, V., et al. 2012, ApJ, 752, 42Google Scholar
de Jong, R. 2011, ESO Messenger, 145, 14Google Scholar
Evans, N. R., Carpenter, K. G., Robinson, R., et al. 2005, AJ, 130, 789Google Scholar
Feast, M. W. & Balona, L. A. 1980, MNRAS, 192, 439CrossRefGoogle Scholar
Fernie, J. D. 1967, AJ, 72, 422Google Scholar
Fiorentino, G., Clementini, G., Marconi, M., et al. 2012, Ap&SS, 341, 143Google Scholar
Fliri, J. & Valls-Gabaud, D. 2012, Ap&SS, 341, 57Google Scholar
Fouqué, P., Arriagada, P., Storm, J., et al. 2007, A&A, 476, 73Google Scholar
Gascoigne, S. C. B. & Kron, G. E. 1965, MNRAS, 130, 333CrossRefGoogle Scholar
Gascoigne, S. C. B. 1969, MNRAS 146, 1CrossRefGoogle Scholar
Gascoigne, S. C. B. 1974, MNRAS 166, 25Google Scholar
Gieren, W. P. 1989, A&A, 225, 381Google Scholar
Gieren, W., Storm, J., Barnes, T. G., iii, et al. 2005, ApJ, 627, 224Google Scholar
Groenewegen, M. A. T. 2004, MNRAS, 353, 903Google Scholar
Groenewegen, M. A. T. 2008, A&A, 488, 25Google Scholar
Haschke, R., Grebel, E. K., & Duffau, S. 2011, AJ, 141, 158Google Scholar
Hubble, E. P. 1953, MNRAS, 113, 658Google Scholar
Iben, I. Jr. 1967, ApJ, 147, 650Google Scholar
Iben, I. Jr. 1974, ARA&A, 12, 215Google Scholar
Iben, I. Jr. & Tuggle, R. S. 1975, ApJ, 197, 39Google Scholar
Inno, L., Matsunaga, N., & Bono, G. 2013, ApJ, in press (arXiv:1212.4376)Google Scholar
Kato, D., Nagashima, C., Nagayama, T., et al. 2007, PASJ, 59, 615Google Scholar
Keller, S. C., & Wood, P. R. 2006 ApJ, 642, 834Google Scholar
Kippenhahn, R. & Smith, L. 1969, A&A, 1, 142Google Scholar
Kayser, S. E. 1967, AJ, 72, 134Google Scholar
Kovtyukh, V. V., Wallerstein, G., & Andrievsky, S. M. 2005, PASP, 117, 1173CrossRefGoogle Scholar
Laney, C. D. & Stobie, R. S. 1986, MNRAS, 222, 449CrossRefGoogle Scholar
Laney, C. D. & Stobie, R. S. 1993, MNRAS, 263, 921Google Scholar
Laney, C. D. & Stobie, R. S. 1994, MNRAS, 266, 441Google Scholar
Lemasle, B., François, P., Bono, G., et al. 2007, A&A, 467, 283Google Scholar
Lemasle, B., François, P., Piersimoni, A., et al. 2008, A&A, 490, 613Google Scholar
Luck, R. E., Moffett, T. J., Barnes, T. G., iii, et al. 1998, AJ, 115, 605Google Scholar
Luck, R. E., Andrievsky, S. M., Kovtyukh, V. V., et al. 2011, AJ, 142, 51CrossRefGoogle Scholar
Luck, R. E. & Lambert, D. L. 2011, AJ, 142, 136Google Scholar
Macri, L. M., Stanek, K. Z., Bersier, D., et al. 2006, ApJ, 652, 1133Google Scholar
Madore, B. F. 1982, ApJ, 253, 575Google Scholar
Majaess, D., Turner, D., & Gieren, W. 2011, ApJ, 741, L36Google Scholar
Marconi, M., Musella, I., & Fiorentino, G. 2005, ApJ, 632, 590Google Scholar
Marconi, M., Musella, I., Fiorentino, G., et al. 2010, ApJ, 713, 615Google Scholar
Marquette, J. B. 1999, in: New Views of the Magellanic Clouds (Chu, Y.-H., Suntzeff, N., Hesser, J., & Bohlender, D., eds), IAU Symp. Ser., 190, 523Google Scholar
Mateo, M., Bailey, J. I., Crane, J., et al. 2012, Proc. SPIE, 8446, 84464YGoogle Scholar
Matsunaga, N., Feast, M. W., & Soszyński, I. 2011, MNRAS, 413, 223Google Scholar
Matthews, L. D., Marengo, M., Evans, N. R., & Bono, G. 2012, ApJ, 744, 53CrossRefGoogle Scholar
Minniti, D., Lucas, P. W., Emerson, J. P., et al. 2010, New Astron., 15, 433Google Scholar
Neilson, H. R., Cantiello, M., & Langer, N. 2011, A&A, 529, L9Google Scholar
Ngeow, C.-C., Kanbur, S. M., Nikolaev, S., et al. 2005, MNRAS, 363, 831Google Scholar
Ngeow, C.-C. & Kanbur, S. M. 2008, in: Galaxies in the Local Volume (Koribalski, B. S., & Jerjen, H., eds), p. 317Google Scholar
Ngeow, C.-C. 2012, ApJ, 747, 50 (N12)Google Scholar
Pedicelli, S., Bono, G., Lemasle, B., et al. 2009, A&A, 504, 81Google Scholar
Persson, S. E., Madore, B. F., Krzemiński, W., et al. 2004, AJ, 128, 2239 (P04)Google Scholar
Pietrinferni, A., Cassisi, S., Salaris, M., et al. 2004, ApJ, 612, 168Google Scholar
Pietrinferni, A., Cassisi, S., Salaris, M., et al. 2006, ApJ, 642, 797Google Scholar
Pietrzyński, G., Thompson, I. B., Gieren, W., et al. 2010, Nature, 468, 542Google Scholar
Pietrzyński, G., Thompson, I. B., Graczyk, D., et al. 2011, ApJ, 742, L20Google Scholar
Pritzl, B. J., Armandroff, T. E., Jacoby, G. H., & Da Costa, G. S. 2007, Bull. Am. Astron. Soc., 39, 845Google Scholar
Prada Moroni, P. G., Gennaro, M., Bono, G., et al. 2012, ApJ, 749, 108Google Scholar
Ramsay, S., Hammersley, P., & Pasquini, L. 2011, ESO Messenger, 145, 10Google Scholar
Ripepi, V., Moretti, M. I., Marconi, M., et al. 2012, MNRAS, 424, 1807 (R12)Google Scholar
Romaniello, M., Primas, F., Mottini, M., et al. 2008, A&A, 488, 731Google Scholar
Sakai, S., Ferrarese, L., Kennicutt, R. C. Jr., et al. 2004, ApJ, 608, 42Google Scholar
Sandage, A. 1962, in: Problems of Extra-Galactic Research (McVittie, G. C., ed.), IAU Symp. Ser., 15, 359Google Scholar
Sandage, A. & Tammann, G. A. 1968, ApJ, 151, 531Google Scholar
Sandage, A., & Tammann, G.A. 1969, ApJ, 157, 683Google Scholar
Sandage, A., Tammann, G. A., & Reindl, B. 2004, A&A, 424, 43Google Scholar
Sasselov, D. D., Beaulieu, J. P., Renault, C., et al. 1997, A&A, 324, 471Google Scholar
Scowcroft, V., Bersier, D., Mould, J. R., & Wood, P. R. 2009, MNRAS, 396, 1287Google Scholar
Soszyński, I., Gieren, W., & Pietrzyński, G. 2005, PASP, 117, 823Google Scholar
Soszyński, I., Udalski, A., Poleski, R., et al. 2012, Acta Astron., 62, 219Google Scholar
Stellingwerf, R. F. 1982, ApJ, 262, 339Google Scholar
Stellingwerf, R. F. 1984, ApJ, 284, 712Google Scholar
Stift, M. J. 1982, A&A, 112, 149Google Scholar
Stobie, R. S. 1969, MNRAS, 144, 511Google Scholar
Storm, J., Gieren, W., Fouqué, P., et al. 2011a, A&A, 534, A95 (S11a)Google Scholar
Storm, J., Gieren, W., Fouqué, P., et al. 2011b, A&A, 534, A95 (S11b)Google Scholar
Welch, D. L. 1994, AJ, 108, 1421Google Scholar