Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T13:54:11.175Z Has data issue: false hasContentIssue false

Classical and Recurrent Nova Models

Published online by Cambridge University Press:  17 January 2013

Jordi José
Affiliation:
Dept. Física i Enginyeria Nuclear, Univ. Politècnica de Catalunya, E-08036 Barcelona, & Institut d'Estudis Espacials de Catalunya, E-08034 Barcelona email: [email protected]
Jordi Casanova
Affiliation:
Dept. Física i Enginyeria Nuclear, Univ. Politècnica de Catalunya, E-08036 Barcelona, & Institut d'Estudis Espacials de Catalunya, E-08034 Barcelona email: [email protected]
Enrique García–Berro
Affiliation:
Dept. Física Aplicada, Univ. Politècnica de Catalunya, E-08860 Castelldefels(Barcelona) & Institut d'Estudis Espacials de Catalunya, E-08034 Barcelona email: [email protected]
Margarita Hernanz
Affiliation:
Inst. Ciències de l'Espai (CSIC), Campus UAB, F. Ciències, E-08193 Bellaterra (Barcelona) & Institut d'Estudis Espacials de Catalunya, E-08034 Barcelona email: [email protected]
Steven N. Shore
Affiliation:
Dipt. Fisica ‘Enrico Fermi’, Univ. Pisa & Ist. Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa email: [email protected]
Alan C. Calder
Affiliation:
Dept. Physics and Astronomy, Stony Brook Univ., Stony Brook, New York11794-3800 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Remarkable progress in the understanding of nova outbursts has been achieved through combined efforts in photometry, spectroscopy and numerical simulations. According to the thermonuclear runaway model, novae are powered by thermonuclear explosions in the hydrogen-rich envelopes transferred from a low-mass stellar companion onto a close white dwarf star. Extensive numerical simulations in 1-D have shown that the accreted envelopes attain peak temperatures ranging between 108 and 4 × 108 K, for about several hundred seconds, hence allowing extensive nuclear processing which eventually shows up in the form of nucleosynthetic fingerprints in the ejecta. Indeed, it has been claimed that novae can play a certain role in the enrichment of the interstellar medium through a number of intermediate-mass elements. This includes 17O, 15N, and 13C, systematically overproduced with respect to solar abundances, plus a lower contribution in a number of other species (A < 40), such as 7Li, 19F, or 26Al. At the turn of the XXI Century, classical novae have entered the era of multidimensional models, which provide a new insight into the physical mechanisms that drive mixing at the core-envelope interface.

In this review, we will present hydrodynamic models of classical novae, from the onset of accretion up to the explosion and ejection stages, both for classical and recurrent novae, with special emphasis on their gross observational properties and their associated nucleosynthesis. The impact of nuclear uncertainties on the final yields will be discussed. Recent results from 2-D models of mixing during classical nova outbursts will also be presented.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Abdo, A. A., et al. 2010, Science, 329, 817Google Scholar
Amari, S. 2002, New Astron. Rev., 46, 519Google Scholar
Amari, S., Gao, X., Nittler, L., Zinner, E., José, J., Hernanz, M., & Lewis, R. 2001, ApJ, 551, 1065Google Scholar
Anupama, G. C. 2002, in Classical Nova Explosions, ed. Hernanz, M. & José, J., New York, AIP, 32Google Scholar
Cameron, A. G. W. 1959, ApJ, 130, 916Google Scholar
Cameron, A. G. W. 1973, in Interstellar Dust and Related Topics, ed. Greenberg, J. M. & Van de Hulst, H. C., Dordrecht, Reidel, 545CrossRefGoogle Scholar
Campbell, W. W., 1892, Astron. Nach., 131, 201Google Scholar
Campbell, W. W., 1895, ApJ, 1, 49Google Scholar
Casanova, J., José, J., Garcı a-Berro, E., Calder, A., & Shore, S. N. 2010, A&A, 513, L5Google Scholar
Casanova, J., José, J., Garcı a-Berro, E., Calder, A., & Shore, S. N. 2011, A&A, 527, A5Google Scholar
Clayton, D. D. & Hoyle, F. 1974, ApJ, 187, L101CrossRefGoogle Scholar
Clayton, D. D. & Hoyle, F. 1976, ApJ, 203, 490Google Scholar
Clerke, A. M. 1902, Problems of Astrophysics, London, NelsonGoogle Scholar
Gehrz, R. D., Truran, J. W., Williams, R. E., & Starrfield, S. M. 1998, PASP, 110, 3CrossRefGoogle Scholar
Giannone, P. & Weigert, A. 1967, Z. Astroph., 67, 41Google Scholar
Glasner, S. A., Livne, E., & Truran, J. W. 1997, ApJ, 475, 754Google Scholar
Glasner, S. A., Livne, E., & Truran, J. W. 2005, ApJ, 625, 347CrossRefGoogle Scholar
Glasner, S. A. & Truran, J. W. 2009, ApJ, 692, L58CrossRefGoogle Scholar
Gurevitch, L. Z. & Lebedinsky, A. I. 1957, in Non-stable stars, ed. Herbig, G.H., Cambridge Univ. Press: Cambridge, 77Google Scholar
Hernanz, M. 2008, in Classical Novae, Bode, M. and Evans, A. (eds.), Cambridge University Press, Cambridge, 252CrossRefGoogle Scholar
Huggins, W. & Miller, W. A. 1866, MNRAS, 26, 215Google Scholar
Iliadis, C., Champagne, A., José, J., Starrfield, S., & Tupper, P. 2002, ApJS, 142, 105Google Scholar
José, J., Garcia-Berro, E., Hernanz, M., & Gil-Pons, P. 2007, ApJ, 662, L103Google Scholar
José, J. & Hernanz, M. 1998, ApJ, 494, 680Google Scholar
José, J., Hernanz, M., & Iliadis, C. 2006, NPA, 777, 550Google Scholar
Joy, A. H. 1954, ApJ, 120, 377Google Scholar
Kercek, A., Hillebrandt, W., & Truran, J. W. 1998, A&A, 337, 379Google Scholar
Kraft, R. P. 1964, ApJ, 139, 457Google Scholar
Nittler, L. R. & Hoppe, P. 2005, ApJ, 631, L89Google Scholar
Pickering, W. H. 1895, Observatory, 234, 436Google Scholar
Rose, W. K. 1968, ApJ, 152, 245Google Scholar
Sanford, R. F. 1949, ApJ, 109, 81Google Scholar
Schatzman, E. 1949, Ann. dAp., 12, 281Google Scholar
Schatzman, E. 1951, Ann. dAp., 14, 294Google Scholar
Sidgreaves, W. 1901a, MNRAS, 62, 137Google Scholar
Sidgreaves, W. 1901b, ApJ, 14, 366Google Scholar
Sparks, W. M. 1969, ApJ, 156, 569CrossRefGoogle Scholar
Starrfield, S. 1971a, MNRAS, 152, 307Google Scholar
Starrfield, S. 1971b, MNRAS, 155, 129Google Scholar
Starrfield, S., Truran, J. W., Sparks, W. M., & Kutter, G. S. 1972, ApJ, 176, 169Google Scholar
Stratton, F. J. M. & Manning, W. H. 1939, Atlas of Spectra of Nova Hercules 1934, Cambridge, Solar Physics ObservatoryGoogle Scholar
Walker, M. F. 1954, PASP, 66, 230Google Scholar