Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T11:23:18.456Z Has data issue: false hasContentIssue false

Class I Methanol Maser Emission in NGC 4945

Published online by Cambridge University Press:  16 July 2018

Tiege P. McCarthy
Affiliation:
School of Physical Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia email: [email protected] email: [email protected] Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 1710, Australia
Simon P. Ellingsen
Affiliation:
School of Physical Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia email: [email protected] email: [email protected]
Xi Chen
Affiliation:
Center for Astrophysics, GuangZhou University, Guangzhou 510006, China Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China email: [email protected]
Shari L. Breen
Affiliation:
Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, Sydney, NSW 2006, Australia email: [email protected]
Maxim A. Voronkov
Affiliation:
Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 1710, Australia
Hai-hua Qiao
Affiliation:
Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China email: [email protected] National Time Service Center, Chinese Academy of Sciences, Xi’An, Shaanxi 710600, China email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have detected maser emission from the 36.2 GHz (4−1 → 30E) methanol transition towards NGC 4945. This emission has been observed in two separate epochs and is approximately five orders of magnitude more luminous than typical emission from this transition within our Galaxy. NGC 4945 is only the fourth extragalactic source observed hosting class I methanol maser emission. Extragalactic class I methanol masers do not appear to be simply highly-luminous variants of their galactic counterparts and instead appear to trace large-scale regions where low-velocity shocks are present in molecular gas.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Breen, S. L., Caswell, J. L., Ellingsen, S. P., & Phillips, C. J., 2010, MNRAS, 406, 1487Google Scholar
Breen, S. L., Ellingsen, S. P., Contreras, Y., et al. 2013, MNRAS, 435, 524CrossRefGoogle Scholar
Breen, S. L., Fuller, G. A., Caswell, J. L., et al. 2015, MNRAS, 450, 4109Google Scholar
Caswell, J. L., Fuller, G. A., Green, J. A., et al. 2010, MNRAS, 404, 1029Google Scholar
Caswell, J. L., Fuller, G. A., Green, J. A., et al. 2011, MNRAS, 417, 1964Google Scholar
Chen, X., Ellingsen, S. P., Baan, W. A., et al. 2015, ApJL, 800, L2Google Scholar
Cyganowski, C. J., Brogan, C. L., Hunter, T. R., & Churchwell, E., 2009, ApJ, 702, 1615Google Scholar
Cyganowski, C. J., Brogan, C. L., Hunter, T. R., et al. 2012, ApJL, 760, L20Google Scholar
Ellingsen, S. P., 2006, ApJ, 638, 241Google Scholar
Ellingsen, S. P., Breen, S. L., Caswell, J. L., Quinn, L. J., & Fuller, G. A., 2010, MNRAS, 404, 779Google Scholar
Ellingsen, S. P., Chen, X., Breen, S. L., & Qiao, H.-H., 2017b, MNRAS, 472, 604CrossRefGoogle Scholar
Ellingsen, S. P., Chen, X., Qiao, H.-H., et al. 2014, ApJL, 790, L28Google Scholar
Ellingsen, S. P., Shabala, S. S., & Kurtz, S. E., 2005, MNRAS, 357, 1003Google Scholar
Green, J. A., Caswell, J. L., Fuller, G. A., et al. 2008, MNRAS, 385, 948Google Scholar
Green, J. A., Caswell, J. L., Fuller, G. A., et al. 2010, MNRAS, 409, 913Google Scholar
Green, J. A., Caswell, J. L., Fuller, G. A., et al. 2012, MNRAS, 420, 3108Google Scholar
Kurtz, S., Hofner, P., & Álvarez, C. V., 2004, ApJS, 155, 149CrossRefGoogle Scholar
Monje, R. R., Lord, S., Falgarone, E., et al. 2014, ApJ, 785, 22CrossRefGoogle Scholar
Ott, M., Whiteoak, J. B., Henkel, C., & Wielebinski, R., 2001, A&A, 372, 463Google Scholar
Sjouwerman, L. O., Murray, C. E., Pihlström, Y. M., Fish, V. L., & Araya, E. D., 2010, ApJL, 724, L158Google Scholar
Spoon, H. W. W., Koornneef, J., Moorwood, A. F. M., Lutz, D., & Tielens, A. G. G. M., 2000, A&A, 357, 898Google Scholar
Spoon, H. W. W., Moorwood, A. F. M., Pontoppidan, K. M., et al. 2003, A&A, 402, 499Google Scholar
Tully, R. B., Courtois, H. M., Dolphin, A. E., et al. 2013, AJ, 146, 86Google Scholar
Voronkov, M. A., Caswell, J. L., Ellingsen, S. P., Green, J. A., & Breen, S. L., 2014, MNRAS, 439, 2584Google Scholar
Voronkov, M. A., Caswell, J. L., Ellingsen, S. P., & Sobolev, A. M., 2010, MNRAS, 405, 2471Google Scholar
Wang, J., Zhang, J., Gao, Y., et al. 2014, Nature Communications, 5, 5449CrossRefGoogle Scholar
Wilson, W. E., Ferris, R. H., Axtens, P., et al. 2011, MNRAS, 416, 832Google Scholar
Yusef-Zadeh, F., Cotton, W., Viti, S., Wardle, M., & Royster, M., 2013, ApJL, 764, L19Google Scholar