Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T12:43:59.729Z Has data issue: false hasContentIssue false

Circum-nuclear molecular disks: Role in AGN fueling and feedback

Published online by Cambridge University Press:  29 March 2021

Francoise Combes*
Affiliation:
Observatoire de Paris, LERMA, Collège de France, CNRS, PSL University, Sorbonne University, UPMC, Paris email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Gas fueling AGN (Active Galaxy Nuclei) is now traceable at high-resolution with ALMA (Atacama Large Millimeter Array) and NOEMA (NOrthern Extended Millimeter Array). Dynamical mechanisms are essential to exchange angular momentum and drive the gas to the super-massive black hole. While at 100pc scale, the gas is sometimes stalled in nuclear rings, recent observations reaching 10pc scale (50mas), may bring smoking gun evidence of fueling, within a randomly oriented nuclear gas disk. AGN feedback is also observed, in the form of narrow and collimated molecular outflows, which point towards the radio mode, or entrainment by a radio jet. Precession has been observed in a molecular outflow, indicating the precession of the radio jet. One of the best candidates for precession is the Bardeen-Petterson effect at small scale, which exerts a torque on the accreting material, and produces an extended disk warp. The misalignment between the inner and large-scale disk, enhances the coupling of the AGN feedback, since the jet sweeps a large part of the molecular disk.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Aalto, S., Costagliola, F., Muller, S., et al. 2016, A&A, 590, A73 Google Scholar
Asmus, D. 2019, MNRAS, 489, 2177 10.1093/mnras/stz2289CrossRefGoogle Scholar
Asmus, D., Hönig, S. F., Gandhi, P., et al. 2016, ApJ, 822, 109 10.3847/0004-637X/822/2/109CrossRefGoogle Scholar
Audibert, A., Combes, F., Garcia-Burillo, S., et al. 2019, A&A, 632, A33 Google Scholar
Banerjee, S., Chakraborty, C., Bhattacharyya, S., et al. 2019a, ApJ, 870, 95 10.3847/1538-4357/aaf102CrossRefGoogle Scholar
Banerjee, S., Chakraborty, C., Bhattacharyya, S., et al. 2019b, MNRAS, 487, 3488 10.1093/mnras/stz1518CrossRefGoogle Scholar
Bardeen, J. M. & Petterson, J. A. 1975, ApJ, 195, L65 10.1086/181711CrossRefGoogle Scholar
Buta, R. & Combes, F. 1996, Fund. Cosmic Phys., 17, 95.Google Scholar
Caproni, A., Abraham, Z., Mosquera Cuesta, H. J., et al. 2006, ApJ, 638, 120 10.1086/498684CrossRefGoogle Scholar
Cicone, C., Maiolino, R., Sturm, E., et al. 2014, A&A, 562, A21 Google Scholar
Combes, F., Garcia-Burillo, S., Casasola, V., et al. 2013, A&A, 558, A124 Google Scholar
Combes, F., Garcia-Burillo, S., Casasola, V., et al. 2014, A&A, 565, A97 Google Scholar
Combes, F., Garcia-Burillo, S., Audibert, A., et al. 2019, A&A, 623, A79 Google Scholar
Davis, T. A., Bureau, M., Onishi, K., et al. 2018, MNRAS, 473, 3818 10.1093/mnras/stx2600CrossRefGoogle Scholar
Emsellem, E., Renaud, F., Bournaud, F., et al. 2015, MNRAS, 446, 2468 10.1093/mnras/stu2209CrossRefGoogle Scholar
Fabian, A. C. 2012, ARAA, 50, 455 10.1146/annurev-astro-081811-125521CrossRefGoogle Scholar
Gallimore, J. F., Baum, S. A., O’Dea, C. P., et al. 2004, ApJ, 613, 794 10.1086/423167CrossRefGoogle Scholar
Garcia-Burillo, S., Combes, F., Schinnerer, E., et al. 2005, A&A, 441, 1011 Google Scholar
Garcia-Burillo, S., Combes, F., Usero, A., et al. 2014, A&A, 567, A125 Google Scholar
Garcia-Burillo, S., Combes, F., Ramos Almeida, C., et al. 2016, ApJ, 823, L12 10.3847/2041-8205/823/1/L12CrossRefGoogle Scholar
Heckman, T. M. & Best, P. N. 2014, ARAA, 52, 589 10.1146/annurev-astro-081913-035722CrossRefGoogle Scholar
Herrnstein, J. R., Moran, J. M., Greenhill, L. J., et al. 1999, Nature, 400, 539 10.1038/22972CrossRefGoogle Scholar
Hönig, S. F. 2019, ApJ, 884, 171 10.3847/1538-4357/ab4591CrossRefGoogle Scholar
Kormendy, J. & Ho, L. C. 2013, ARAA, 51, 511 10.1146/annurev-astro-082708-101811CrossRefGoogle Scholar
Liska, M., Hesp, C., Tchekhovskoy, A., et al. 2018, MNRAS, 474, L81 10.1093/mnrasl/slx174CrossRefGoogle Scholar
Liska, M., Tchekhovskoy, A., Ingram, A., et al. 2019, MNRAS, 487, 550 10.1093/mnras/stz834CrossRefGoogle Scholar
Maloney, P. R. & Begelman, M. C. 1997, ApJ, 491, L43 10.1086/311058CrossRefGoogle Scholar
Martin, R. 2008, MNRAS, 387, 830 10.1111/j.1365-2966.2008.13275.xCrossRefGoogle Scholar
Mioduszewski, A. J., Dhawan, V., Rupen, M. P., et al. 2005, ASPC, 340, 281 Google Scholar
Morganti, R. & Oosterloo, T. 2018, A&ARv, 26, 4 Google Scholar
Nealon, R., Price, D. J., Nixon, C. J., et al. 2015, MNRAS, 448, 1526 10.1093/mnras/stv014CrossRefGoogle Scholar
Papaloizou, J. C. B. & Pringle, J. E. 1983, MNRAS, 202, 1181 10.1093/mnras/202.4.1181CrossRefGoogle Scholar
Pfeiffer, H. P. & Lai, D. 2004, ApJ, 604, 766 10.1086/381967CrossRefGoogle Scholar
Pringle, J. E. 1996, MNRAS, 281, 357 10.1093/mnras/281.1.357CrossRefGoogle Scholar
Ramos-Almeida, C. & Ricci, C. 2017, NatAs, 1, 679 Google Scholar
Renaud, F., Bournaud, F., Emsellem, E., et al. 2015, MNRAS, 454, 3299 10.1093/mnras/stv2223CrossRefGoogle Scholar
Smajic, S., Moser, L., Eckart, A., et al. 2014, A&A, 567, A119 Google Scholar
Storchi-Bergmann, T. & Schnorr-Müller, A. 2019, NatAs, 3, 48 Google Scholar
Wilson, A. S. & Ulvestad, J. S. 1987, ApJ, 319, 105 10.1086/165436CrossRefGoogle Scholar
Zhuravlev, V. V., Ivanov, P. B., Fragile, P. C., et al. 2014, ApJ, 796, 104 10.1088/0004-637X/796/2/104CrossRefGoogle Scholar